Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuchao Wang is active.

Publication


Featured researches published by Xiuchao Wang.


Oncotarget | 2016

Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes

Xiuchao Wang; He Ren; Tiansuo Zhao; Weidong Ma; Jie Dong; Shengjie Zhang; Wen Xin; Shengyu Yang; Li Jia; Jihui Hao

Hypoxia-inducible factor-1 alpha (HIF-1α) is over-expressed in many cancers including pancreatic ductal adenocarcinoma (PDAC) and correlated with poor prognosis. We aim to determine the effect of germline genetic variants on the regulation of the homeostasis of the miRNA-gene regulatory loop in HIF1A gene and PDAC risk. HIF1A rs2057482 single nucleotide polymorphism (SNP) was genotyped in 410 PDAC cases and 490 healthy controls. The CC genotype SNP HIF1A is significantly correlated with PDAC risk (OR = 1.719, 95% CI: 1.293–2.286) and shorter overall survival (OS, P<0.0001) compared with the CT/TT alleles group. The C/T variants of rs2057482, a SNP located near the miR-199a binding site in HIF1A, could lead to differential regulation of HIF1A by miR-199a. Specifically, the C allele of rs2057482 weakened miR-199a–induced repression of HIF-1α expression on both mRNA and protein levels. In the PDAC tissue, individuals with the rs2057482-CC genotype expressed significantly higher levels of HIF-1α protein than those with the rs2057482-CT/TT genotype (P<0.0001). Both the CC genotype of SNP HIF1A and increased HIF-1α expression are significantly associated with shorter OS of patients with PDAC. After adjusted by TNM staging, differentiation grade, and the levels of CA19-9, both SNP HIF1A and HIF-1α expression retained highly significance on OS (P<0.0001). Taken together, our study demonstrates that host genetic variants could disturb the regulation of the miR-199a/HIF1A regulatory loop and alter PDAC risk and poor prognosis. In conclusion, the rs2057482-CC genotype increases the susceptibility to PDAC and associated with cancer progression.


Nature Communications | 2017

Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression

Chongbiao Huang; Na Li; Zengxun Li; Antao Chang; Yanan Chen; Tiansuo Zhao; Yang Li; Xiuchao Wang; Wei Zhang; Zhimin Wang; Lin Luo; Jingjing Shi; Shengyu Yang; He Ren; Jihui Hao

Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1–fibrinogen–ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression.


Carcinogenesis | 2014

Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection

Xiuchao Wang; He Ren; Tiansuo Zhao; Jing Chen; Wei Sun; Yan Sun; Weidong Ma; Jian Wang; Chuntao Gao; Song Gao; Mingxiao Lang; Li Jia; Jihui Hao

Stem cell factor (SCF), a ligand of c-kit, is a hematopoietic growth factor. Uncontrolled activity of SCF/c-kit signaling pathway contributes to the formation of a variety of human malignancies. In this study, we determined whether SCF expression could risk-stratify patients with hepatocellular carcinoma (HCC) after curative resection. HCC tissues from 160 patients were collected during curative resection and stained with SCF and CD34, a marker for microvessel density (MVD), using immunohistochemistry. Two statistical analyses were performed: an independent continuous and a multivariate categorical analysis, with test/validation set-defined cut points, and Kaplan-Meier estimated outcome measures of overall survival (OS) and relapse-free survival (RFS). We found that higher levels of SCF confer worse OS (continuous P = 0.014; and categorical P = 0.009), and RFS (continuous P = 0.002; categorical P = 0.003) of patients with HCC. SCF varies independently from MVD-CD34, tumor node metastasis, histologic grade, age and gender, and retains prognostic significance when analysed as a categorical variable in a multivariate analysis . We confirmed that MVD-CD34 is also an independent prognostic marker for patients with HCC. The levels of SCF and CD34 showed a positive and significant correlation (P < 0.0001) and double low expression confers superior OS (median = 48 months) and RFS (median = 24 months), whereas double high expression confers shortest RFS (median = 10.5 months) compared with single measurements. The prognostic values of SCF and CD34 were independently determined in this study and we propose that both of them are independent prognostic markers for HCC.


Oncogene | 2017

Cancer-FOXP3 directly activated CCL5 to recruit FOXP3 + Treg cells in pancreatic ductal adenocarcinoma

Xiuchao Wang; Mingxiao Lang; Tiansuo Zhao; X Feng; Chen Zheng; Chongbiao Huang; Jihui Hao; Jie Dong; Lin Luo; X Li; C Lan; W Yu; Ming Yu; Shengyu Yang; He Ren

Forkheadbox protein 3 (FOXP3), initially identified as a key transcription factor for regulatory T cells (Treg cells), was also expressed in many tumors including pancreatic ductal adenocarcinoma (PDAC). However, its role in PDAC progression remains elusive. In this study, we utilized 120 PDAC tissues after radical resection to detect cancer-FOXP3 and Treg cells by immunohistochemistry and evaluated clinical and pathological features of these patients. Cancer-FOXP3 was positively correlated with Treg cells accumulation in tumor tissues derived from PDAC patients. In addition, high cancer-FOXP3 expression was associated with increased tumor volumes and poor prognosis in PDAC especially combined with high levels of Treg cells. Overexpression of cancer-FOXP3 promoted the tumor growth in immunocompetent syngeneic mice but not in immunocompromised or Treg cell-depleted mice. Furthermore, CCL5 was directly trans-activated by cancer-FOXP3 and promoted the recruitment of Treg cells from peripheral blood to the tumor site in vitro and in vivo. This finding has been further reinforced by the evidence that Treg cells recruitment by cancer-FOXP3 was impaired by neutralization of CCL5, thereby inhibiting the growth of PDAC. In conclusion, cancer-FOXP3 serves as a prognostic biomarker and a crucial determinant of immunosuppressive microenvironment via recruiting Treg cells by directly trans-activating CCL5. Therefore, cancer-FOXP3 could be used to select patients with better response to CCL5/CCR5 blockade immunotherapy.


Medical Oncology | 2014

Prostate-specific membrane antigen as a marker of pancreatic cancer cells

He Ren; Huan Zhang; Xiuchao Wang; Junxiu Liu; Zhanna Yuan; Jihui Hao

AbstractThe aim of this study was to identify the expression of prostate-specific membrane antigen (PSMA) and analyze the correlation between PSMA with clinical characteristics in patients with pancreatic cancer. The expression of PSMA protein and mRNA was detected by immunohistochemistry and real-time quantitative polymerase chain reaction in pancreatic cancer tissues, pancreatic intraepithelial neoplasia or normal pancreatic tissues, respectively. And clinical characteristics and prognosis of patients were investigated. PSMA was expressed in pancreatic cancer cells, both in protein and mRNA levels. Moreover, the PSMA levels were associated with the prognosis of patients with pancreatic ductal adenocarcinoma. The overall survival time of pancreatic cancer patients with high expression of PSMA was significantly shorter than that of the low ones. Moreover, the PSMA levels were correlated with clinicopathological features including the histological grade and pathological tumor-node-metastasis stage. PSMA is involved in the carcinogenesis of pancreatic cancer, and it might serve as a potential therapeutic target for pancreatic cancer.


Oncotarget | 2015

Rituximab-induced HMGB1 release is associated with inhibition of STAT3 activity in human diffuse large B-cell lymphoma

Tiansuo Zhao; He Ren; Xiuchao Wang; Pengfei Liu; Fan Yan; Wenna Jiang; Yang Li; Jing Li; John G. Gribben; Li Jia; Jihui Hao

Treatment with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) has greatly improved clinical outcomes in patients with diffuse large B-cell lymphoma (DLBCL) compared with CHOP. The mechanism of rituximab-induced cell death is poorly understood. We found that rituximab does not enhance the directly killing efficacy of CHOP, as tested on a panel of DLBCL cell lines. Rituximab induced a rapid release of HMGB1 (High mobility group protein B 1). This release is independent of cell death but significantly correlated with an inhibition on STAT3 activity. In the resting state, HMGB1 co-localizes and interacts with STAT3 in the nucleus of DLBCL cells. Treatment with rituximab breaks this binding and triggers HMGB1 release. Treatment with R-CHOP but not CHOP significantly increased plasma HMGB1 and decreased IL-10 concentrations in DLBCL patients compared with controls. The conditioned medium from rituximab-treated DLBCL cells is able to trigger dendritic cell maturation, phagocytosis, and IFN-g secretion by cytotoxic T cells. In conclusion, our results demonstrate that rituximab induces an inhibition on STAT3 activity, leading to increased HMGB1 release and decreased IL-10 secretion, which elicits immune responses, suggesting that indirect effects on the immune system rather than direct killing contribute to elimination of DLBCL.


PLOS ONE | 2014

CypA, a gene downstream of HIF-1α, promotes the development of PDAC.

Huan Zhang; Jing Chen; Fenghua Liu; Chuntao Gao; Xiuchao Wang; Tiansuo Zhao; Jingcheng Liu; Song Gao; Xiao Zhao; He Ren; Jihui Hao

Hypoxia-inducible factor-1α (HIF-1α) is a highly important transcription factor involved in cell metabolism. HIF-1α promotes glycolysis and inhibits of mitochondrial respiration in pancreatic ductal adenocarcinoma (PDAC). In response to tumor hypoxia, cyclophilin A (CypA) is over-expressed in various cancer types, and is associated with cell apoptosis, tumor invasion, metastasis, and chemoresistance in PDAC. In this study, we showed that both HIF-1α and CypA expression were significantly associated with lymph node metastasis and tumor stage. The expression of CypA was correlated with HIF-1α. Moreover, the mRNA and protein expression of CypA markedly decreased or increased following the suppression or over-expression of HIF-1α in vitro. Chromatin immunoprecipitation analysis showed that HIF-1α could directly bind to the hypoxia response element (HRE) in the CypA promoter regions and regulated CypA expression. Consistent with other studies, HIF-1α and CypA promoted PDAC cell proliferation and invasion, and suppressed apoptosis in vitro. Furthermore, we proved the combination effect of 2-methoxyestradiol and cyclosporin A both in vitro and in vivo. These results suggested that,CypA, a gene downstream of HIF-1α, could promote the development of PDAC. Thus, CypA might serve as a potential therapeutic target for PDAC.


Cancer Letters | 2016

Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma

Mingxiao Lang; Xiuchao Wang; Hongwei Wang; Jie Dong; Chungen Lan; Jihui Hao; Chongbiao Huang; Xin Li; Ming Yu; Yanhui Yang; Shengyu Yang; He Ren

Arsenic trioxide (ATO) has been selected as a promising treatment not only in leukemia but also in solid tumors. Previous studies showed that the cytotoxicity of ATO mainly depends on the induction of reactive oxygen species. However, ATO has only achieved a modest effect in pancreatic ductal adenocarcinoma, suggesting that the existing radical scavenging proteins, such as hypoxia inducible factor-1, attenuate the effect. The goal of this study is to investigate the effect of combination treatment of ATO plus PX-478 (hypoxia-inducible factor-1 inhibitor) and its underlying mechanism. Here, we showed that PX-478 robustly strengthened the anti-growth and pro-apoptosis effect of ATO on Panc-1 and BxPC-3 pancreatic cancer cells in vitro. Meanwhile, in vivo mouse xenograft models also showed the synergistic effect of ATO plus PX-478 compared with any single agent. Further studies showed that the anti-tumor effect of ATO plus PX-478 was derived from the reactive oxygen species-induced apoptosis. We next confirmed that Hypoxia-inducible factor-1 cleared reactive oxygen species by its downstream target, forkhead box O transcription factors, and this effect may justify the strategy of ATO plus PX-478 in the treatment of pancreatic cancer.


Cancer Letters | 2017

A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer

Xiao Zhao; Xiuchao Wang; Lijun Fang; Chungen Lan; Xiaowei Zheng; Yongwei Wang; Yinlong Zhang; Xuexiang Han; Shaoli Liu; Keman Cheng; Ying Zhao; Jian Shi; Jiayi Guo; Jihui Hao; He Ren; Guangjun Nie

KRAS mutation is the most common genetic event in pancreatic cancer. Whereas KRAS itself has proven difficult to inhibit, agents that target key downstream signals of KRAS, such as RAF, are possibly effective for pancreatic cancer treatment. Because selective BRAF inhibitors paradoxically induce downstream signaling activation, a pan-RAF inhibitor, LY3009120 is a better alternate for KRAS-mutant tumor treatment. Here we explored a new combinational strategy using a YAP inhibitor and LY3009120 in pancreatic cancer treatment. We found that reduced YAP expression closely correlates with longer relapse-free and overall survival of patients. Stable knockdown of YAP significantly inhibited pancreatic cancer cell proliferation and tumor growth. In addition, LY3009120 exhibited a dramatically enhanced antitumor effect in combination with YAP knockdown. YAP depletion blocks the activation of a parallel AKT signal pathway after LY3009120 treatment. Finally, combination with a YAP inhibitor, verteporfin, significantly enhanced the antitumor efficacy of LY3009120. Collectively, our results demonstrate that genetic or pharmacological inhibition of YAP can increase sensitivity to LY3009120 in pancreatic cancer through blocking compensatory activation of a parallel AKT signal pathway, thereby validating a combinatorial approach for treating KRAS-mutant pancreatic cancer.


Gastroenterology | 2017

Interleukin 35 Expression Correlates With Microvessel Density in Pancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice

Chongbiao Huang; Zengxun Li; Na Li; Yang Li; Antao Chang; Tiansuo Zhao; Xiuchao Wang; Hongwei Wang; Song Gao; Shengyu Yang; Jihui Hao; He Ren

BACKGROUND & AIMS Cells of the monocyte lineage contribute to tumor angiogenesis. Interleukin 35 (IL35) is a member of the IL12 family produced by regulatory, but not effector, T cells. IL35 is a dimer comprising the IL12 alpha and IL27 beta chains, encoded by IL12A and EBI3, respectively. Expression of IL35 is increased in pancreatic ductal adenocarcinomas (PDACs) compared with normal pancreatic tissues, and promotes metastasis. We investigated the role of IL35 in monocyte-induced angiogenesis of PDAC in mice. METHODS We measured levels of IL35 protein, microvessel density, and numbers of monocytes in 123 sequential PDAC tissues from patients who underwent surgery in China in 2010. We performed studies with the human PDAC cell lines CFPAC-1, BxPC-3, Panc-1, MIA-PaCa-2, and mouse PDAC cell line Pan02. Monocyte subsets were isolated by flow cytometry from human peripheral blood mononuclear cells. Fused human or mouse IL12A and EBI3 genes were overexpressed in PDAC cells or knocked down using small hairpin RNAs. Cells were grown as xenograft tumors in SCID mice; some mice were given injections of an IL35-neutralizing antibody and tumor growth was monitored. We performed chemotaxis assays to measure the ability of IL35 to recruit monocytes. We analyzed mRNA sequences of 179 PDACs in the Cancer Genome Atlas to identify correlations between expression of IL12A and EBI3 and monocyte markers. Monocytes incubated with IL35 or PDAC cell supernatants were analyzed in tube formation and endothelial migration assays. RESULTS In PDAC samples from patients, levels of IL35 mRNA and protein correlated with microvessel density and infiltration of monocyte lineage cells. In cells and mice with xenograft tumors, IL35 increased recruitment of monocytes into PDAC tumors, which required CCL5. Upon exposure to IL35, monocytes increased expression of genes whose products promote angiogenesis (CXCL1 and CXCL8). IL35 activated transcription of CCL5, CXCL1, and CXCL8 by inducing GP130 signaling, via IL12RB2 and phosphorylation of STAT1 and STAT4. A combination of a neutralizing antibody against IL35 and gemcitabine significantly decreased monocyte infiltration, microvessel density, and volume of xenograft tumors grown from PDAC cells in mice. CONCLUSIONS PDAC cells produce IL35 to recruit monocytes via CCL5 and induce macrophage to promote angiogenesis via expression of CXCL1 and CXCL8. IL35 signaling promotes angiogenesis and growth of xenograft tumors from PDAC cells in mice. IL35 might serve as a therapeutic target for patients with pancreatic cancer.

Collaboration


Dive into the Xiuchao Wang's collaboration.

Top Co-Authors

Avatar

He Ren

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jihui Hao

Tianjin Medical University Cancer Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Tiansuo Zhao

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Shengyu Yang

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Chongbiao Huang

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongwei Wang

Tianjin Medical University Cancer Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Jie Dong

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Mingxiao Lang

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Song Gao

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yang Li

Tianjin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge