Xiujun Sun
Chinese Academy of Fishery Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiujun Sun.
PLOS ONE | 2015
Xiujun Sun; Aiguo Yang; Biao Wu; Liqing Zhou; Zhihong Liu
The Yesso scallop Patinopecten yessoensis is an economically important marine bivalve species in aquaculture and fishery in Asian countries. However, limited genomic resources are available for this scallop, which hampers investigations into molecular mechanisms underlying their unique biological characteristics, such as shell formation and pigmentation. Mantle is the special tissue of P. yessoensis that secretes biomineralization proteins inducing shell deposition as well as pigmentation on the shells. However, a current deficiency of transcriptome information limits insight into mechanisms of shell formation and pigmentation in this species. In this study, the transcriptome of the mantle of P. yessoensis was deeply sequenced and characterized using Illumina RNA-seq technology. A total of 86,521 unique transcripts are assembled from 55,884,122 reads that passed quality filters, and annotated, using Gene Ontology classification. A total of 259 pathways are identified in the mantle transcriptome, including the calcium signaling and melanogenesis pathways. A total of 237 unigenes that are homologous to 102 reported biomineralization genes are identified, and 121 unigenes that are homologous to 93 known proteins related to melanin biosynthesis are found. Twenty-three annotated unigenes, which are mainly homologous to calmodulin and related proteins, Ca2+/calmodulin-dependent protein kinase, adenylate/guanylate cyclase, and tyrosinase family are potentially involved in both biomineralization and melanin biosynthesis. It is suggested that these genes are probably not limited in function to induce shell deposition by calcium metabolism, but may also be involved in pigmentation of the shells of the scallop. This potentially supports the idea that there might be a link between calcium metabolism and melanin biosynthesis, which was previously found in vertebrates. The findings presented here will notably advance the understanding of the sophisticated processes of shell formation as well as shell pigmentation in P. yessoensis and other bivalve species, and also provide new evidence on gene expression for the understanding of pigmentation and biomineralization not only in invertebrates but also probably in vertebrates.
Journal of Ocean University of China | 2017
Xiujun Sun; Biao Wu; Liqing Zhou; Zhihong Liu; Yinghui Dong; Aiguo Yang
Melanin is one of the essential compounds in the pigments of molluscan shells. However, the effects of melanin on color variations in molluscs are largely unknown. Our previous study suggests that Yesso scallop Patinopecten yessoensis might contain melanin pigment in the dark brown shell. We therefore isolated melanin from the pigmented shells using hydrochloric acid method, and characterized the types of melanin pigments by spectrophotometry. The purified melanin, which was verified by spectrophotometry scanning and HPLC analysis, showed the typical characteristics of melanin absorption spectra and HPLC chromatograms. The contents of pheomelanin and eumelanin in pigmented shells, which were determined by the linear standard curve of melanin at 405 nm and 350 nm absorbance, were 48.23 ± 1.350 and 157.65 ± 5.905 mg, respectively. The present results indicate that the brown-pigmented shells of scallops comprise approximately 76.6% of eumelanin and 23.4% of pheomelanin, which supports the presence of eumelanin-rich pigment in scallop shells. Therefore, the combination of hydrochloric acid extraction and spectrophotometric quantification is a rapid and efficient method to isolate and quantify melanin in shells. This will facilitate the melanin studies related to shell color polymorphism and the selective breeding of bivalves with different shell colors.
PLOS ONE | 2016
Xiujun Sun; Zhihong Liu; Liqing Zhou; Biao Wu; Yinghui Dong; Aiguo Yang
The Yesso scallop Patinopecten yessoensis displays polymorphism in shell colors, which is of great interest for the scallop industry. To identify genes involved in the shell coloration, in the present study, we investigate the transcriptome differences by Illumina digital gene expression (DGE) analysis in two extreme color phenotypes, Red and White. Illumina sequencing yields a total of 62,715,364 clean sequence reads, and more than 85% reads are mapped into our previously sequenced transcriptome. There are 25 significantly differentially expressed genes between Red and White scallops. EPR (Electron paramagnetic resonance) analysis has identified EPR spectra of pheomelanin and eumelanin in the red shells, but not in the white shells. Compared to the Red scallops, the White scallops have relatively higher mRNA expression in tyrosinase genes, but lower expression in other melanogensis-associated genes. Meantime, the relatively lower tyrosinase protein and decreased tyrosinase activity in White scallops are suggested to be associated with the lack of melanin in the white shells. Our findings highlight the functional roles of melanogensis-associated genes in the melanization process of scallop shells, and shed new lights on the transcriptional and post-transcriptional mechanisms in the regulation of tyrosinase activity during the process of melanin synthesis. The present results will assist our molecular understanding of melanin synthesis underlying shell color polymorphism in scallops, as well as other bivalves, and also help the color-based breeding in shellfish aquaculture.
Fish & Shellfish Immunology | 2017
Liqing Zhou; Aiguo Yang; Zhihong Liu; Biao Wu; Xiujun Sun; Zhenming Lv; Jiteng Tian; Meirong Du
Abstract The ark shell Scapharca broughtonii is a commercially important shellfish in China. Alservers solution (AS), modified Alservers solution (MAS) and Heparin sodium solution (HSS) are common anticoagulants used for shellfish blood. To observe the immune response mediated by its hemocytes, we challenged in vivo S. broughtonii hemolymph with Vibrio anguillarum and dealt with the following three anticoagulants in vitro: Alservers solution (AS), modified Alservers solution (MAS) and Heparin sodium solution (HSS). The methodologies we used were immunostimulation with V. anguillarum, Wright‐Giemsa staining, micro‐examination, and flow cytometric and hydrolyzing enzyme activity analysis. The results showed that all three types of anticoagulants effectively prevented blood clotting in ark shellfish. The morphology of hemocytes did not significantly change 30 h after anticoagulant treatment, except for the shrinking of hemocytes after administering HSS. The size and permeability of hemocytes changed when treated with the anticoagulants and when stimulated with V. anguillarum. Both alkaline phosphatase (AKP) and acid phosphatase (ACP) in hemocytes and Plasma were measured at different times after they were stimulated with V. anguillarum in HSS and MAS. The AKP enzymatic activity in HSS was somewhat higher than in the MAS anticoagulant, but changes in response to V. anguillarum challenge of enzymatic activity were almost the same in HSS and MAS groups. In conclusion, all three types of anticoagulants may be used for ark shell blood preservation. They all changed the cell‐surface characteristics of hemocytes to inhibit clot formation. The AS anticoagulant was appropriate for maintaining white and red cell shapes, while MAS was ideal for retaining throbus cell function. Lastly, HSS was appropriate for maintaining enzymatic activity in hemolymph and function of hemocytes. Following this investigation, we gained insight into the changes in hemolymph characteristic during immune response. HighlightsWe studied Changes in hemolymph characteristics of shellfish hemolymph challenged with Vibrio anguillarum under various anticoagulants.All three types of anticoagulants may be used for ark shell blood preservation.The size and permeability of hemocytes changed when treated with the anticoagulants.Thrombus cells of S. brouthtonii may change in various anticoagulants solutions.
Fish & Shellfish Immunology | 2019
Liqing Zhou; Dan Zhao; Biao Wu; Xiujun Sun; Zhihong Liu; Feng Zhao; Zhenming Lv; Aiguo Yang; Qing Zhao; Gaowei Zhang; Chunyan Ma
Scapharca broughtonii is one of the most important Arcidae aquaculture species in the Asia-Pacific region. We aimed to investigate the immune responses of hemocytes from ark shell S. broughtonii hemolymph against pathogens. Hemocyte ultrastructure and immunological activity in response to Vibrio anguillarum challenge were observed by scanning and transmission electron microscopy. Before ultrastructure observation, we used the API ZYM semi-quantitative kit to evaluate the levels of hydrolytic enzymes in the plasma and hemocytes following V. anguillarum infection. An enzyme-linked immunosorbent assay kit was used to investigate the variation in the lysozyme activity and hemocytes following bacterial infection. The results showed that hemocytes were the main defense cells against bacterial infection, whereas plasma played a role in the transport and support of hemocytes. It was presumed that an important function of lysozymes and hydrolytic enzymes in lysosomes was for bacterial digestion. Three major types of hemocytes were observed, namely, red blood cells (RBCs), white blood cells (WBCs), and thrombocytes (TCs). Scanning electron microscopy showed that the normal RBCs appeared pie-shaped with 10 μm diameter and 4 μm central thickness, whereas WBCs were spherical in shape with varying sizes, 4-8 μm diameter, and included small lymphocytes. TCs were long, spindle-shaped, and 12-20 μm in length. The cell membrane surface was smooth and even for all cells before pathogen challenge. Under transmission electron microscopy, RBCs displayed a limited ability to devour and digest bacteria adherent to the cell surface following infection. Many hemoglobin particles were observed in the RBC cytoplasm. WBCs were very active against bacterial invasion and showed a strong ability to digest and decompose infected and wrapped V. anguillarum through phagocytosis and lysosome fusion. Digestive vacuoles rapidly became transparent and were thought to contain increasing quantities of pathogen-induced lysozymes. WBCs that devoured pathogenic bacteria were prone to deformation as well as adhesion to each other. TCs were rich in endoplasmic reticulum (ER) content in their cytoplasm and were widely connected in a net-shaped structure. Mitochondria in TCs formed clusters upon invasion of V. anguillarum in the hemolymph. TCs disintegrated to release the ER into the plasma to form a mesh that facilitated clotting. The ability of circulating hemocytes to quickly modify their morphologies and stainability suggests that S. broughtonii is endowed with highly dynamic hemocyte populations capable of coping with environmental changes and rapidly growing pathogens.
Journal of Oceanology and Limnology | 2018
Liqing Zhou; Xuemei Wang; Biao Wu; Xiujun Sun; Qing Zhao; Gaowei Zhang; Zhihong Liu; Aiguo Yang
Blepharipoda liberate Shen is a commercially valuable seafood species that has important ecological significance in Shandong Province, China. Although B. liberate is crustacean, its external characteristics are not entirely those of shrimps or crabs. The question of whether B. liberate is a shrimp or a crab has been debated in recent years. We studied the karyotype of B. liberate by light microscopy using air-drying and spreading methods. We obtained mitotic chromosomal plates from B. liberate larvae, and from adult B. liberate females subsequent to egg-laying. The results revealed that B. liberate has 53 pairs of chromosomes (i.e., n=53 and 2n=106), a characteristic shared with four species of crab. The karyogram of B. liberate consists of 25 metacentric, 14 submetacentric, 11 subtelocentric and 3 telocentric pairs. We did not find any heteromorphosis sex chromosomes. Tissue from larvae, gills and ovaries can be used for chromosomal investigations, and we found similar lampbrush chromosomes in ovary cells. Comparatively speaking, larvae tissue is more practical, and ovary tissue is more suitable for the preparation of lampbrush chromosomes. B. liberate is more closely related to crabs than to shrimps, based on the numbers of chromosomes. The B. liberate karyotype reported here provides a basis for further comparative cytogenetic studies of species populations.
Fish & Shellfish Immunology | 2018
Qing Zhao; Biao Wu; Zhihong Liu; Xiujun Sun; Liqing Zhou; Aiguo Yang; Gaowei Zhang
ABSTRACT Hemoglobin, the main component of haemolymph, is widely distributed in animals. Although its important oxygen transport functions has been extensively reported, studies on the immune function of hemoglobin in mollusc are few. Research on immune of hemoglobin of ark shell Scapharca broughtonii attracted more and more attention due to its ownership of erythrocyte comparing with many other shellfish. In this study, the hemoglobin cDNA of S. broughtonii was cloned by EST and RACE methods (named as SbHb). Sequence analysis revealed that the cDNA was 946 bp in length, including an open reading frame (ORF) of 459 bp which encoded a polypeptide of 152 amino acid residues, and a 5′‐untranslated region (UTR) of 313 bp, a 3′‐UTR of 174 bp. Sequence and homology analysis showed that the SbHb shared similarity with that of other related species. The mRNA expression profiles of SbHb in tested tissues analyzed by quantitative real‐time PCR (qRT‐PCR) revealed that the mRNA of SbHb could be all detected in foot, gill, mantle, adductor muscle, haemocytes and hepatopancreas, and the highest level was found in the haemocytes, which is 163.2 times higher than that in adductor muscle. Vibrio anguillarum stimulation and hypoxia treatment both had significant impact on the expression of SbHb, which showed the same trends as increasing first to the highest at 16h after treatment and then followed by declining. Recombinant protein of SbHb (rSbHb) was successfully obtained by prokaryotic expression, and further function analysis indicated obviously that the rSbHb had very strong phenoloxidase‐like activity (PO‐like activity) and it could remarkably inhibit growth of gram‐negative bacteria V. anguillarum. All the data suggested that the SbHb plays a significant role in the process of antibacterial and anoxia tolerance reaction in S. broughtonii, providing the evidence that SbHb is a key immune factor. HIGHLIGHTSFull length cDNA of hemoglobin in S. broughtonii (SbHb) and recombinant protein SbHb are obtained.Biochemical analysis indcates that SbHb is involved in the acute phase response.
BMC Genomics | 2018
Xiujun Sun; Zhihong Liu; Biao Wu; Liqing Zhou; Qi Wang; Wei Wu; Aiguo Yang
BackgroundScallops possess striated and catch adductor muscles, which have different structure and contractile properties. The striated muscle contracts very quickly for swimming, whereas the smooth catch muscle can keep the shells closed for long periods with little expenditure of energy. In this study, we performed proteomic and transcriptomic analyses of differences between the striated (fast) and catch (slow) adductor muscles in Yesso scallop Patinopecten yessoensis.ResultsTranscriptomic analysis reveals 1316 upregulated and 8239 downregulated genes in slow compared to fast adductor muscle. For the same comparison, iTRAQ-based proteomics reveals 474 differentially expressed proteins (DEPs), 198 up- and 276 downregulated. These DEPs mainly comprise muscle-specific proteins of the sarcoplasmic reticulum, extracellular matrix, and metabolic pathways. A group of conventional muscle proteins—myosin heavy chain, myosin regulatory light chain, myosin essential light chain, and troponin—are enriched in fast muscle. In contrast, paramyosin, twitchin, and catchin are preferentially expressed in slow muscle. The association analysis of proteomic and transcriptomic data provides the evidences of regulatory events at the transcriptional and posttranscriptional levels in fast and slow muscles. Among 1236 differentially expressed unigenes, 22.7% show a similar regulation of mRNA levels and protein abundances. In contrast, more unigenes (53.2%) exhibit striking differences between gene expression and protein abundances in the two muscles, which indicates the existence of fiber-type specific, posttranscriptional regulatory events in most of myofibrillar proteins, such as myosin heavy chain, titin, troponin, and twitchin.ConclusionsThis first, global view of protein and mRNA expression levels in scallop fast and slow muscles reveal that regulatory mechanisms at the transcriptional and posttranscriptional levels are essential in the maintenance of muscle structure and function. The existence of fiber-type specific, posttranscriptional regulatory mechanisms in myofibrillar proteins will greatly improve our understanding of the molecular basis of muscle contraction and its regulation in non-model invertebrates.
Journal of Ocean University of China | 2017
Xiujun Sun; Dongming Li; Zhihong Liu; Liqing Zhou; Biao Wu; Aiguo Yang
The pen shell (Atrina pectinata) is a large wedge-shaped bivalve, which belongs to family Pinnidae. Due to its large and nutritious adductor muscle, it is the popular seafood with high commercial value in Asia-Pacific countries. However, limiting genomic and transcriptomic data have hampered its genetic investigations. In this study, the transcriptome of A. pectinata was deeply sequenced using Illumina pair-end sequencing technology. After assembling, a total of 127263 unigenes were obtained. Functional annotation indicated that the highest percentage of unigenes (18.60%) was annotated on GO database, followed by 18.44% on PFAM database and 17.04% on NR database. There were 270 biological pathways matched with those in KEGG database. Furthermore, a total of 23452 potential simple sequence repeats (SSRs) were identified, of them the most abundant type was mono-nucleotide repeats (12902, 55.01%), which was followed by di-nucleotide (8132, 34.68%), tri-nucleotide (2010, 8.57%), tetra-nucleotide (401, 1.71%), and penta-nucleotide (7, 0.03%) repeats. Sixty SSRs were selected for validating and developing genic SSR markers, of them 23 showed polymorphism in a cultured population with the average observed and expected heterozygosities of 0.412 and 0.579, respectively. In this study, we established the first comprehensive transcript dataset of A. pectinata genes. Our results demonstrated that RNA-Seq is a fast and cost-effective method for genic SSR development in non-model species.
Fish & Shellfish Immunology | 2015
Libing Zheng; Biao Wu; Zhihong Liu; Jiteng Tian; Tao Yu; Liqing Zhou; Xiujun Sun; Aiguo Yang