Xiujun Xie
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiujun Xie.
Plant and Cell Physiology | 2014
Li Huan; Xiujun Xie; Zhenbing Zheng; Feifei Sun; Songcui Wu; Moyang Li; Shan Gao; Wenhui Gu; Guangce Wang
Studies have demonstrated that photosynthetic limitations and starch degradation are responses to stress; however, the relationship between the two is seldom described in detail. In this article, the effects of salt stress on photosynthesis, the levels of NADPH and total RNA, the starch content and the activities of glucose-6-phosphate dehydrogenase (G6PDH) and ribulose-5-phosphate kinase (RPK) were evaluated. In thalli that underwent salt treatments, the cyclic electron flow through PSI showed greater stress tolerance than the flow through PSII. Even though the linear electron flow was suppressed by DCMU, the cyclic electron flow still operated. The electron transport rate I (ETRI) increased as the salinity increased when the thalli recovered in seawater containing DCMU. These results suggested that PSI receives electrons from a source other than PSII. Furthermore, the starch content and RPK activity decreased, while the content of NADPH and total RNA, and the activity of G6PDH increased under salt stress. Soluble sugar from starch degradation may enter the oxidative pentose phosphate pathway (OPPP) to produce NADPH and ribose 5-phosphate. Data analysis suggests that NADPH provides electrons for PSI in Ulva prolifera during salt stress, the OPPP participates in the stress response and total RNA is synthesized in excess to assist recovery.
Scientific Reports | 2015
Wenhui Gu; Huan Li; Peipei Zhao; Ruixue Yu; Guanghua Pan; Shan Gao; Xiujun Xie; Aiyou Huang; Linwen He; Guangce Wang
Under high light (HL) stress, astaxanthin-accumulating Haematococcus pluvialis and β-carotene-accumulating Dunaliella salina showed different responsive patterns. To elucidate cellular-regulating strategies photosynthetically and metabolically, thylakoid membrane proteins in H. pluvialis and D. salina were extracted and relatively quantified after 0 h, 24 h and 48 h of HL stress. Proteomic analysis showed that three subunits of the cytochrome b6/f complex were greatly reduced under HL stress in H. pluvialis, while they were increased in D. salina. Additionally, the major subunits of both photosystem (PS) II and PSI reaction center proteins were first reduced and subsequently recovered in H. pluvialis, while they were gradually reduced in D. salina. D. salina also showed a greater ability to function using the xanthophyll-cycle and the cyclic photosynthetic electron transfer pathway compared to H. pluvialis. We propose a reoriented and effective HL-responsive strategy in H. pluvialis, enabling it to acclimate under HL. The promising metabolic pathway described here contains a reorganized pentose phosphate pathway, Calvin cycle and glycolysis pathway participating in carbon sink formation under HL in H. pluvialis. Additionally, the efficient carbon reorientation strategy in H. pluvialis was verified by elevated extracellular carbon assimilation and rapid conversion into astaxanthin.
Scientific Reports | 2015
Peipei Zhao; Wenhui Gu; Songcui Wu; Aiyou Huang; Linwen He; Xiujun Xie; Shan Gao; Baoyu Zhang; Jianfeng Niu; A.-Peng Lin; Guangce Wang
Phaeodactylum tricornutum Bohlin is an ideal model diatom; its complete genome is known, and it is an important economic microalgae. Although silicon is not required in laboratory and factory culture of this species, previous studies have shown that silicon starvation can lead to differential expression of miRNAs. The role that silicon plays in P. tricornutum growth in nature is poorly understood. In this study, we compared the growth rate of silicon starved P. tricornutum with that of normal cultured cells under different culture conditions. Pigment analysis, photosynthesis measurement, lipid analysis, and proteomic analysis showed that silicon plays an important role in P. tricornutum growth and that its presence allows the organism to grow well under green light and low temperature.
New Phytologist | 2016
Xiujun Xie; Aiyou Huang; Wenhui Gu; Zhengrong Zang; Guanghua Pan; Shan Gao; Linwen He; Baoyu Zhang; Jianfeng Niu; Apeng Lin; Guangce Wang
The development of microalgae on an industrial scale largely depends on the economic feasibility of mass production. High light induces productive suspensions during cultivation in a tubular photobioreactor. Herein, we report that high light, which inhibited the growth of Chlorella sorokiniana under autotrophic conditions, enhanced the growth of this alga in the presence of acetate. We compared pigments, proteomics and the metabolic flux ratio in C. sorokiniana cultivated under high light (HL) and under low light (LL) in the presence of acetate. Our results showed that high light induced the synthesis of xanthophyll and suppressed the synthesis of chlorophylls. Acetate in the medium was exhausted much more rapidly in HL than in LL. The data obtained from LC-MS/MS indicated that high light enhanced photorespiration, the Calvin cycle and the glyoxylate cycle of mixotrophic C. sorokiniana. The results of metabolic flux ratio analysis showed that the majority of the assimilated carbon derived from supplemented acetate, and photorespiratory glyoxylate could enter the glyoxylate cycle. Based on these data, we conclude that photorespiration provides glyoxylate to speed up the glyoxylate cycle, and releases acetate-derived CO2 for the Calvin cycle. Thus, photorespiration connects the glyoxylate cycle and the Calvin cycle, and participates in the assimilation of supplemented acetate in C. sorokiniana under high light.
Journal of Applied Phycology | 2016
Songcui Wu; Xiujun Xie; Li Huan; Zhenbing Zheng; Peipei Zhao; Jixian Kuang; Xueping Liu; Guangce Wang
Flocculation harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana has received little attention. Therefore, we attempted to screen for an optimal chemical flocculant and optimize flocculation conditions from five chemical flocculants—ferric chloride (FC), aluminum sulfate (AS), polyaluminum chloride (PAC), aluminum potassium sulfate (APS), and zinc sulfate (ZS)—for effective flocculation of I. galbana. The growth rate, photosynthetic performance, and fucoxanthin content were determined in re-suspended flocculated algal cells and in the flocculation supernatant cultured algal cells. The results showed that high growth rate and fucoxanthin accumulation were observed when FC was used as the flocculant in I. galbana cultures, which indicated that FC may cause less harm to I. galbana than the other aluminum-based flocculants. Furthermore, satisfactory flocculation efficiency was also observed when FC was used to flocculate I. galbana, and the FC dosage was less than that required for flocculation of I. galbana using PAC, APS, and AS. Thus, we selected FC as the optimal flocculant for harvesting I. galbana based on its flocculation efficiency together with algal physiological performance, growth rate, and fucoxanthin content.
Journal of Phycology | 2018
Peipei Zhao; Wenhui Gu; Aiyou Huang; Songcui Wu; Changheng Liu; Li Huan; Shan Gao; Xiujun Xie; Guangce Wang
Iron is a limiting factor that controls the phytoplankton biomass in the modern ocean, and iron fertilization of the ocean could lead to blooms dominated by diatoms. Thus, iron plays an important role in controlling the distribution of diatoms. In this study, we measured the growth rate and photosynthetic activity of the model diatom Phaeodactylum tricornutum cultured under different iron concentrations and found that it grew more rapidly and had a much higher photosynthetic efficiency under higher iron concentrations. In order to explore the unique mechanism of the response of diatoms to iron, a proteomic analysis was carried out, and the results indicated that iron promotes the Calvin cycle of P. tricornutum. Diatoms can tolerate the pressure of iron limitation by replacing iron‐rich proteins with flavodoxin, and so on. Moreover, we found that the photosystem I (PSI) activity of iron‐limited algae that were treated by N’,N’,N’,N’‐tetramethyl‐p‐phenylenediamine (TMPD) was increased significantly. As TMPD plays the role of a cytochrome b6/f complex that transfers electrons from photosystem II to PSI, the cytochrome b6/f complex is the key to photosynthesis regulation. Iron could influence the growth of P. tricornutum by regulating its biosynthesis. All of the results suggest that iron might affect the growth of diatoms through the Calvin cycle and the cytochrome b6/f complex.
Photosynthetica | 2016
Xiujun Xie; Xulei Wang; L. D. Lin; Linwen He; Wenhui Gu; Shan Gao; X. F. Yan; Guanghua Pan; M.-J. Wu; Guangce Wang
Photoprotection mechanisms protect photosynthetic organisms, especially under stress conditions, against photodamage that may inhibit photosynthesis. We investigated the effects of short-term immersion in hypo- and hypersalinity sea water on the photosynthesis and xanthophyll cycle in Sargassum fusiforme (Harvey) Setchell. The results indicated that under moderate light [110 μmol(photon) m−2 s−1], the effective quantum yield of PSII was not reduced in S. fusiforme fronds after 1 h in hyposalinity conditions, even in fresh water, but it was significantly affected by extreme hypersalinity treatment (90‰ sea water). Under high light [HL, 800 μmol(photon) m−2 s−1], photoprotective mechanisms operated efficiently in fronds immersed in fresh water as indicated by high reversible nonphotochemical quenching of chlorophyll fluorescence (NPQ) and de-epoxidation state; the quantum yield of PSII recovered during the subsequent relaxation period. In contrast, fronds immersed in 90‰ sea water did not withstand HL, barely developed reversible NPQ, and accumulated little antheraxanthin and zeaxanthin during HL, while recovery of the quantum yield of PSII was severely inhibited during the subsequent relaxation period. The data provided concrete evidence supporting the short-term tolerance of S. fusiforme to immersion in fresh water compared to hypersalinity conditions. The potential practical implications of these results were also discussed.
Chinese Journal of Oceanology and Limnology | 2016
Jianfeng Niu; Jianhua Feng; Xiujun Xie; Shan Gao; Guangce Wang
Pyropia yezoensis, belongs to the genus of Porphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron flow that occurred during the algae were stressed with different light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three different CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support efficient photosynthesis, the potential roles of CEF might also include the regulation of different photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone (PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ+ pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an effective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the different mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.
Frontiers in Plant Science | 2018
Bin Yu; Jianfeng Niu; Jianhua Feng; Meiling Xu; Xiujun Xie; Wenhui Gu; Shan Gao; Guangce Wang
Pyropia yezoensis can survive the severe water loss that occurs during low tide, making it an ideal species to investigate the acclimation mechanism of intertidal seaweed to special extreme environments. In this study, we determined the effects of high salinity on photosynthesis using increasing salinity around algal tissues. Both electron transport rates, ETR (I) and ETR (II), showed continuous decreases as the salinity increased. However, the difference between these factors remained relatively stable, similar to the control. Inhibitor experiments illustrated that there were at least three different cyclic electron transport pathways. Under conditions of severe salinity, NAD(P)H could be exploited as an endogenous electron donor to reduce the plastoquinone pool in Py. yezoensis. Based on these findings, we next examined how these different cyclic electron transport (CETs) pathways were coordinated by cloning the gene (HM370553) for ferredoxin-NADP+ oxidoreductase (FNR). A phylogenetic tree was constructed, and the evolutionary relationships among different FNRs were evaluated. The results indicated that the Py. yezoensis FNR showed a closer relationship with cyanobacterial FNR. The results of both real-time polymerase chain reaction and western blotting showed that the enzyme was upregulated under 90–120‰ salinity. Due to the structure-function correlations in organism, Py. yezoensis FNR was proposed to be involved in NAD(P)H-dependent Fd+ reduction under severe salinity conditions. Thus, through the connection between different donors bridged by FNR, electrons were channeled toward distinct routes according to the different metabolic demands. This was expected to make the electron transfer in the chloroplasts become more flexible and to contribute greatly to acclimation of Py. yezoensis to the extreme variable environments in the intertidal zone.
Phycological Research | 2016
Ruixue Yu; Apeng Lin; Xiujun Xie; Hui Wang; Fu Zhang; Guangzhou Liu; Guangce Wang; Cunguo Lin
Gracilaria spp. are dominant macroalgae inhabiting the intertidal zone and are exposed to constant wave action and currents. In wild Gracilaria populations, fronds tend to occur in clusters, being grouped close to one another on the shore. It is rare to find thalli growing individually, but the reason for such a clustering development is unknown. In this study we traced the early development of tetraspores of Gracilaria sp. and examined the adhesion strength of discs. We recorded two different tetraspore‐derived disc developmental patterns: in the first pattern, individual tetraspores developed into discs; whereas in the second pattern, multiple tetraspores that had attached in proximity to each other, coalesced to form a single composite disc during early development. We found that more uprights grew from coalesced discs and that the attachment areas of coalesced discs were larger compared with those of individual discs. The adhesion strengths of coalesced discs and individual discs were analyzed. The retention percentage of coalesced discs after treatment with rapid water flow was higher than that of individual discs, suggesting that coalesced discs are better able to withstand wave flow when compared with single‐spore discs. Based on these results, we propose that the clustering of Gracilaria sp. plants at sites within the intertidal zone is a mechanism that enables this macroalgae to survive the wave action and currents that occur in this zone, and that plant recruitment in these areas is enhanced by the coalescence of holdfast discs during early development.