Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuling Yang is active.

Publication


Featured researches published by Xiuling Yang.


PLOS Pathogens | 2011

Suppression of Methylation-Mediated Transcriptional Gene Silencing by βC1-SAHH Protein Interaction during Geminivirus-Betasatellite Infection

Xiuling Yang; Yan Xie; Priya Raja; Sizhun Li; Jamie N. Wolf; Qingtang Shen; David M. Bisaro; Xueping Zhou

DNA methylation is a fundamental epigenetic modification that regulates gene expression and represses endogenous transposons and invading DNA viruses. As a counter-defense, the geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Some geminiviruses have acquired a betasatellite called DNA β. This study presents evidence that suppression of methylation-mediated TGS by the sole betasatellite-encoded protein, βC1, is crucial to the association of Tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB). We show that TYLCCNB complements Beet curly top virus (BCTV) L2- mutants deficient for methylation inhibition and TGS suppression, and that cytosine methylation levels in BCTV and TYLCCNV genomes, as well as the host genome, are substantially reduced by TYLCCNB or βC1 expression. We also demonstrate that while TYLCCNB or βC1 expression can reverse TGS, TYLCCNV by itself is ineffective. Thus its AC2/AL2 protein, known to have suppression activity in other geminiviruses, is likely a natural mutant in this respect. A yeast two-hybrid screen of candidate proteins, followed by bimolecular fluorescence complementation analysis, revealed that βC1 interacts with S-adenosyl homocysteine hydrolase (SAHH), a methyl cycle enzyme required for TGS. We further demonstrate that βC1 protein inhibits SAHH activity in vitro. That βC1 and other geminivirus proteins target the methyl cycle suggests that limiting its product, S-adenosyl methionine, may be a common viral strategy for methylation interference. We propose that inhibition of methylation and TGS by βC1 stabilizes geminivirus/betasatellite complexes.


PLOS ONE | 2011

Characterization of Small Interfering RNAs Derived from the Geminivirus/Betasatellite Complex Using Deep Sequencing

Xiuling Yang; Yu Wang; Wei Guo; Yan Xie; Qi Xie; Longjiang Fan; Xueping Zhou

Background Small RNA (sRNA)-guided RNA silencing is a critical antiviral defense mechanism employed by a variety of eukaryotic organisms. Although the induction of RNA silencing by bipartite and monopartite begomoviruses has been described in plants, the nature of begomovirus/betasatellite complexes remains undefined. Methodology/Principal Findings Solanum lycopersicum plant leaves systemically infected with Tomato yellow leaf curl China virus (TYLCCNV) alone or together with its associated betasatellite (TYLCCNB), and Nicotiana benthamiana plant leaves systemically infected with TYLCCNV alone, or together with TYLCCNB or with mutant TYLCCNB were harvested for RNA extraction; sRNA cDNA libraries were then constructed and submitted to Solexa-based deep sequencing. Both sense and anti-sense TYLCCNV and TYLCCNB-derived sRNAs (V-sRNAs and S-sRNAs) accumulated preferentially as 22 nucleotide species in infected S. lycopersicum and N. benthamiana plants. High resolution mapping of V-sRNAs and S-sRNAs revealed heterogeneous distribution of V-sRNA and S-sRNA sequences across the TYLCCNV and TYLCCNB genomes. In TYLCCNV-infected S. lycopersicum or N. benthamiana and TYLCCNV and βC1-mutant TYLCCNB co-infected N. benthamiana plants, the primary TYLCCNV targets were AV2 and the 5′ terminus of AV1. In TYLCCNV and betasatellite-infected plants, the number of V-sRNAs targeting this region decreased and the production of V-sRNAs increased corresponding to the overlapping regions of AC2 and AC3, as well as the 3′ terminal of AC1. βC1 is the primary determinant mediating symptom induction and also the primary silencing target of the TYLCCNB genome even in its mutated form. Conclusions/Significance We report the first high-resolution sRNA map for a monopartite begomovirus and its associated betasatellite using Solexa-based deep sequencing. Our results suggest that viral transcript might act as RDR substrates resulting in dsRNA and secondary siRNA production. In addition, the betasatellite affected the amount of V-sRNAs detected in S. lycopersicum and N. benthamiana plants.


Journal of General Virology | 2014

V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants.

Bi Wang; Fangfang Li; Changjun Huang; Xiuling Yang; Yajuan Qian; Yan Xie; Xueping Zhou

Tomato yellow leaf curl virus (TYLCV) is a DNA virus belonging to the genus Begomovirus. TYLCV replicates using double-stranded DNA intermediates that can become the target of plant transcriptional gene silencing (TGS). Here, we show that the V2 protein of TYLCV can suppress TGS of a transcriptionally silenced green fluorescent protein (GFP) transgene in Nicotiana benthamiana line 16-TGS. Through bisulfite sequencing and chop-PCR, we demonstrated that the TYLCV V2 can reverse GFP transgene silencing by reducing the methylation levels in the 35S promoter sequence. Both AtSN1 and MEA-ISR loci in Arabidopsis thaliana were previously reported to be strongly methylated, and we show that the methylation status of both loci was significantly reduced in TYLCV V2 transgenic Arabidopsis plants. We conclude that TYLCV can efficiently suppress TGS when it infects plants, and its V2 protein is responsible for the TGS suppression activity.


PLOS ONE | 2012

Enhanced vitellogenesis in a whitefly via feeding on a begomovirus-infected plant.

Jian-Yang Guo; Sheng-Zhang Dong; Xiuling Yang; Lu Cheng; Fang-Hao Wan; Shu-Sheng Liu; Xueping Zhou; Gong-Yin Ye

Background The MEAM1 (B biotype) Bemisia tabaci (Gennadius) is one of the most widespread and damaging whitefly cryptic species. Our previous studies discovered that the MEAM1 whitefly indirectly benefits from interactions with the tomato yellow leaf curl China virus (TYLCCNV) via accelerated ovarian development and increased fecundity. However, the physiological mechanism of begomoviruse-infected plants acting on the reproduction of the insect vector was unknown. Methodology/Principal Findings Biochemical and molecular properties of vitellogenin (Vg) and vitellin (Vt) were characterized in the MEAM1 whitefly. In addition, kinetics of Vt levels in ovary and Vg levels in hemolymph in different stages were detected using a sandwich ELISA. The level of hemolymph Vg increased rapidly after eclosion. A significantly higher level of hemolymph Vg and ovary Vt were observed in whiteflies feeding on virus-infected tobacco plants than those feeding on uninfected plants. In order to detect the levels of Vg mRNA transcription, complete vitellogenin (Vg) mRNA transcripts of 6474 bp were sequenced. Vg mRNA level in whiteflies feeding on virus-infected plants was higher than those feeding on uninfected plants. However, virus-infection of the whiteflies per se, as demonstrated using an artificial diet system, did not produce significant changes in Vg mRNA level. Conclusions/Significance In MEAM1 whitefly, increased levels of both vitellin and vitellogenin as well as increased transcription of Vg mRNA are associated with feeding on begomovirus-infected plants, thus providing a mechanism for accelerated vitellogenesis. We conclude that MEAM1 whitefly profits from feeding on begomovirus-infected plants for yolk protein synthesis and uptake, and thereby increases its fecundity. These results not only provide insights into the molecular and physiological mechanisms underlying the elevated reproduction of a whitefly species through its association with a begomovirus-infected plant, but also provide a better understanding of the molecular mechanisms related to whitefly reproduction.


Virus Genes | 2009

Tomato yellow leaf curl Thailand virus-[Y72] from Yunnan is a monopartite begomovirus associated with DNAβ

Wei Guo; Xiuling Yang; Yan Xie; Xiaofeng Cui; Xueping Zhou

Previous studies have shown that isolates of tomato yellow leaf curl Thailand virus (TYLCTHV) originated from Thailand are bipartite begomoviruses, while all the seven TYLCTHV isolates found in China are associated with DNAβ molecules. In this study, infectious clones of TYLCTHV isolate Y72 (TYLCTHV-[Y72]) and its DNAβ were constructed to verify the bipartite or monopartite nature of TYLCTHV. Agroinoculation showed that TYLCTHV-[Y72] alone was able to induce significant symptoms in Nicotiana benthamiana, Nicotiana glutinosa, and Solanum lycopersicum plants, but co-inoculation with its associated satellite DNAβ produced more severe symptoms, which is similar to tobacco curly shoot virus. Southern blot results showed that TYLCTHV DNAβ could increase the virus accumulation in systemically infected tissues. Thus, TYLCTHV-[Y72] is a monopartite begomovirus, which may represent an evolutionary intermediate between the begomoviruses requiring DNAβ and begomoviruses dispensable of DNAβ.


PLOS Pathogens | 2017

A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana

Fangfang Li; Nan Zhao; Zhenghe Li; Xiongbiao Xu; Yaqin Wang; Xiuling Yang; Shu-Sheng Liu; Aiming Wang; Xueping Zhou

A recently characterized calmodulin-like protein is an endogenous RNA silencing suppressor that suppresses sense-RNA induced post-transcriptional gene silencing (S-PTGS) and enhances virus infection, but the mechanism underlying calmodulin-like protein-mediated S-PTGS suppression is obscure. Here, we show that a calmodulin-like protein from Nicotiana benthamiana (NbCaM) interacts with Suppressor of Gene Silencing 3 (NbSGS3). Deletion analyses showed that domains essential for the interaction between NbSGS3 and NbCaM are also required for the subcellular localization of NbSGS3 and NbCaM suppressor activity. Overexpression of NbCaM reduced the number of NbSGS3-associated granules by degrading NbSGS3 protein accumulation in the cytoplasm. This NbCaM-mediated NbSGS3 degradation was sensitive to the autophagy inhibitors 3-methyladenine and E64d, and was compromised when key autophagy genes of the phosphatidylinositol 3-kinase (PI3K) complex were knocked down. Meanwhile, silencing of key autophagy genes within the PI3K complex inhibited geminivirus infection. Taken together these data suggest that NbCaM acts as a suppressor of RNA silencing by degrading NbSGS3 through the autophagy pathway.


Applied and Environmental Microbiology | 2011

Molecular Characterization of Tomato Leaf Curl China Virus, Infecting Tomato Plants in China, and Functional Analyses of Its Associated Betasatellite

Xiuling Yang; Wei Guo; Xinying Ma; Qianli An; Xueping Zhou

ABSTRACT A novel tomato-infecting begomovirus from Guangxi province, China, was identified and characterized, for which the name Tomato leaf curl China virus (ToLCCNV) was proposed. Phylogenetic and recombination analyses of the virus genomic sequences suggested that ToLCCNV may have arisen by recombination among Tomato leaf curl Vietnam virus (ToLCVV), Tomato leaf curl Gujarat virus (ToLCGV), and an unknown virus. A betasatellite molecule was found to be associated with ToLCCNV (ToLCCNB), and its complete nucleotide sequences were determined. Infectious clones of ToLCCNV and ToLCCNB were constructed and then used for agro-inoculation of plants; ToLCCNV alone infected Nicotiana benthamiana, Nicotiana glutinosa, Petunia hybrida, and Solanum lycopersicum plants, but no symptoms were induced. ToLCCNB was required for induction of leaf curl disease in these hosts. The βC1 protein of ToLCCNB was identified as a suppressor of RNA silencing and accumulated primarily in the nucleus. Deletion mutagenesis of βC1 showed that the central part of βC1 (amino acids 44 to 74) was responsible for both the suppressor activity and nuclear localization.


Journal of Zhejiang University-science B | 2014

Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China *

Xiuling Yang; Meng-ning Zhou; Yajuan Qian; Yan Xie; Xueping Zhou

Tomato yellow leaf curl virus (TYLCV), belonging to the genus Begomovirus of the family Geminiviridae, is emerging as the most destructive pathogen of tomato plants. Since the first report of TYLCV in Shanghai, China in 2006, TYLCV has spread rapidly to 13 provinces or autonomous regions of China. In this study, the molecular variability and evolution of TYLCV were monitored in Shanghai from its first upsurge in 2006 until 2010. Full-length genomic sequences of 26 isolates were obtained by rolling circle amplification. Sequence analysis showed that the intergenic region was the most variable, with a mean mutation rate of 4.81×10−3 nucleotide substitutions per site per year. Genetic differentiation was found within isolates obtained from 2006, 2009, and 2010, though a linear increase in genetic diversity over time was not evident. Whilst significant parts of TYLCV genes were under negative selection, the C4 gene embedded entirely within the C1 gene had a tendency to undergo positive selection. Our results indicate that a mechanism of independent evolution of overlapping regions could apply to the natural population of TYLCV in Shanghai, China.


BMC Plant Biology | 2014

A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana

Bingguang Xiao; Xiuling Yang; Chuyu Ye; Yang Liu; Chenhai Yan; Yu Wang; Xiuping Lu; Yongping Li; Longjiang Fan

BackgroundRoles of microRNAs (miRNAs) and short interfering RNAs (siRNAs) in biotic stress responses, e.g., viral infection, have been demonstrated in plants by many studies. Tomato yellow leaf curl China virus (TYLCCNV) is a monopartite begomovirus that can systemically infect Solanaceae plants, and induces leaf curling, yellowing and enation symptoms when co-inoculated with a betasatellite (TYLCCNB). The released genome sequence of Nicotiana benthamiana provides an opportunity to identify miRNAs and siRNAs responsive to begomovirus-associated betasatellite in N. benthamiana.ResultsmiRNAs were identified in three small RNA libraries generated using RNA isolated from N. benthamiana plants systemically infected with TYLCCNV (Y10A) alone, co-infected with Y10A and its betasatellite TYLCCNB (Y10β) or a TYLCCNB mutant (Y10mβ) that contains a mutated βC1, the sole betasatellite-encoded protein. A total of 196 conserved miRNAs from 38 families and 197 novel miRNAs from 160 families were identified. Northern blot analysis confirmed that expression of species-specific miRNAs was much lower than that of conserved miRNAs. Several conserved and novel miRNAs were found to be responsive to co-infection of Y10A and Y10β but not to co-infection of Y10A and Y10mβ, suggesting that these miRNAs might play a role unique to interaction between Y10β and N. benthamiana. Additionally, we identified miRNAs that can trigger the production of phased secondary siRNAs (phasiRNAs).ConclusionsIdentification of miRNAs with differential expression profiles in N. benthamiana co-infected with Y10A and Y10β and co-infected with Y10A and Y10mβ indicates that these miRNAs are betasatellite-responsive. Our result also suggested a potential role of miRNA-mediated production of phasiRNAs in interaction between begomovirus and N. benthamiana.


Frontiers in Plant Science | 2015

Analysis of genetic variation and diversity of Rice stripe virus populations through high-throughput sequencing

Lingzhe Huang; Zefeng Li; Jianxiang Wu; Yi Xu; Xiuling Yang; Longjiang Fan; Rongxiang Fang; Xueping Zhou

Plant RNA viruses often generate diverse populations in their host plants through error-prone replication and recombination. Recent studies on the genetic diversity of plant RNA viruses in various host plants have provided valuable information about RNA virus evolution and emergence of new diseases caused by RNA viruses. We analyzed and compared the genetic diversity of Rice stripe virus (RSV) populations in Oryza sativa (a natural host of RSV) and compared it with that of the RSV populations generated in an infection of Nicotiana benthamiana, an experimental host of RSV, using the high-throughput sequencing technology. From infected O. sativa and N. benthamiana plants, a total of 341 and 1675 site substitutions were identified in the RSV genome, respectively, and the average substitution ratio in these sites was 1.47 and 7.05 %, respectively, indicating that the RSV populations from infected N. benthamiana plant are more diverse than those from infected O. sativa plant. Our result gives a direct evidence that virus might allow higher genetic diversity for host adaptation.

Collaboration


Dive into the Xiuling Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge