Xiuwei H. Yang
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiuwei H. Yang.
Molecular & Cellular Proteomics | 2007
Oleg V. Kovalenko; Xiuwei H. Yang; Martin E. Hemler
Tetraspanins serve as molecular organizers of multiprotein microdomains in cell membranes. Hence to understand functions of tetraspanin proteins, it is critical to identify laterally interacting partner proteins. Here we used a novel technical approach involving exposure and cross-linking of membrane-proximal cysteines coupled with LC-MS/MS protein identification. In this manner we identified nine potential tetraspanin CD9 partners, including claudin-1. Chemical cross-linking yielded a CD9-claudin-1 heterodimer, thus confirming direct association and adding claudin-1 to the short list of proteins that can directly associate with CD9. Interaction of CD9 (and other tetraspanins) with claudin-1 was supported by subcellular colocalization and was confirmed in multiple cell lines, although other claudins (claudin-2, -3, -4, -5, and -7) associated to a much lesser extent. Moreover claudin-1 was distributed very similarly to CD9 in sucrose gradients and, like CD9, was released from A431 and A549 cells upon cholesterol depletion. These biochemical features of claudin-1 are characteristic of tetraspanin microdomain proteins. Although claudins are major structural components of intercellular tight junctions, CD9-claudin-1 complexes did not reside in tight junctions, and depletion of key tetraspanins (CD9 and CD151) by small interfering RNA had no effect on paracellular permeability. However, tetraspanin depletion did cause a marked decrease in the stability of newly synthesized claudin-1. In conclusion, these results (a) validate a technical approach that appears to be particularly well suited for identifying protein partners directly associated with tetraspanins or with other proteins that contain membrane-proximal cysteines and (b) provide insight into how non-junctional claudins may be regulated in the context of tetraspanin-enriched microdomains.
Cancer Research | 2010
Xiuwei H. Yang; Ludmila M. Flores; Qinglin Li; Pengcheng Zhou; Fenghui Xu; Ian E. Krop; Martin E. Hemler
Resistance to anti-ErbB2 agents is a significant problem in the treatment of human ErbB2+ breast cancers. We show here that adhesion of human ErbB2+ breast cancer cells to basement membrane laminin-5 provides substantial resistance to trastuzumab and lapatinib, agents that respectively target the extracellular and kinase domains of ErbB2. Knockdown of laminin-binding integrins (alpha6beta4, alpha3beta1) or associated tetraspanin protein CD151 reversed laminin-5 resistance and sensitized ErbB2+ cells to trastuzumab and lapatinib. CD151 knockdown, together with trastuzumab treatment, inhibited ErbB2 activation and downstream signaling through Akt, Erk1/2, and focal adhesion kinase (FAK). Hence, ErbB2 function in mammary tumor cells is promoted by integrin-mediated adhesion to laminin-5, with strong support by CD151, leading to signaling through FAK. Consequently, removal or inhibition of any of these components (laminin-5, integrin, CD151, FAK) markedly sensitizes cells to anti-ErbB2 agents. These new insights should be useful when devising strategies for overcoming drug resistance in ErbB2+ cancers.
Oncogene | 2013
Qinglin Li; Xiuwei H. Yang; Fenghui Xu; Chandan Sharma; Hong-Xing Wang; Konstantin Knoblich; Isaac Rabinovitz; Scott R. Granter; Martin E. Hemler
Here we provide the first evidence that tetraspanin CD151 can support de novo carcinogenesis. During two-stage mouse skin chemical carcinogenesis, CD151 reduces tumor lag time and increases incidence, multiplicity, size and progression to malignant squamous cell carcinoma (SCC), while supporting both cell survival during tumor initiation and cell proliferation during the promotion phase. In human skin SCC, CD151 expression is selectively elevated compared with other skin cancer types. CD151 support of keratinocyte survival and proliferation may depend on activation of transcription factor STAT3 (signal transducers and activators of transcription), a regulator of cell proliferation and apoptosis. CD151 also supports protein kinase C (PKC)α–α6β4 integrin association and PKC-dependent β4 S1424 phosphorylation, while regulating α6β4 distribution. CD151–PKCα effects on integrin β4 phosphorylation and subcellular localization are consistent with epithelial disruption to a less polarized, more invasive state. CD151 ablation, while minimally affecting normal cell and normal mouse functions, markedly sensitized mouse skin and epidermoid cells to chemicals/drugs including 7,12-dimethylbenz[α]anthracene (mutagen) and camptothecin (topoisomerase inhibitor), as well as to agents targeting epidermal growth factor receptor, PKC, Jak2/Tyk2 and STAT3. Hence, CD151 ‘co-targeting’ may be therapeutically beneficial. These findings not only support CD151 as a potential tumor target, but also should apply to other cancers utilizing CD151/laminin-binding integrin complexes.
Journal of Biological Chemistry | 2006
Xiuwei H. Yang; Oleg V. Kovalenko; Tatiana V. Kolesnikova; Milena M. Andzelm; Eric Rubinstein; Jack L. Strominger; Martin E. Hemler
CD9, a tetraspanin protein, makes crucial contributions to sperm egg fusion, other cellular fusions, epidermal growth factor receptor signaling, cell motility, and tumor suppression. Here we characterize a low affinity anti-CD9 antibody, C9BB, which binds preferentially to homoclustered CD9. Using mAb C9BB as a tool, we show that cell surface CD9 homoclustering is promoted by expression of α3β1 and α6β4 integrins and by palmitoylation of the CD9 and β4 proteins. Conversely, CD9 is shifted toward heteroclusters upon expression of CD9 partner proteins (EWI-2 and EWI-F) or other tetraspanins, or upon ablation of CD9 palmitoylation. Furthermore, unpalmitoylated CD9 showed enhanced EWI-2 association, thereby demonstrating a previously unappreciated role for tetraspanin palmitoylation, and underscoring how depalmitoylation and EWI-2 association may collaborate to shift CD9 from homo- to heteroclusters. In conclusion, we have used a novel molecular probe (mAb C9BB) to demonstrate the existence of multiple types of CD9 complex on the cell surface. A shift from homo- to heteroclustered CD9 may be functionally significant because the latter was especially obvious on malignant epithelial tumor cells. Hence, because of its specialized properties, C9BB may be more useful than other anti-CD9 antibodies for monitoring CD9 during tumor progression.
Journal of Cell Science | 2012
Xiuwei H. Yang; Rossen Mirchev; Xinyu Deng; Patrick W. Yacono; Helen Yang; David E. Golan; Martin E. Hemler
Laminin-binding integrins (α3β1, α6β1, α6β4, α7β1) are almost always expressed together with tetraspanin CD151. In every coexpressing cell analyzed to date, CD151 makes a fundamental contribution to integrin-dependent motility, invasion, morphology, adhesion and/or signaling. However, there has been minimal mechanistic insight into how CD151 affects integrin functions. In MDA-MB-231 mammary cells, tetraspanin CD151 knockdown impairs α6 integrin clustering and functions without decreasing α6 integrin expression or activation. Furthermore, CD151 knockdown minimally affects the magnitude of α6 integrin diffusion, as measured using single particle tracking. Instead, CD151 knockdown has a novel and unexpected dysregulating effect on the mode of α6 integrin diffusion. In control cells α6 integrin shows mostly random-confined diffusion (RCD) and some directed motion (DMO). In sharp contrast, in CD151-knockdown cells α6 integrin shows mostly DMO. In control cells α6 diffusion mode is sensitive to actin disruption, talin knockdown and phorbol ester stimulation. By contrast, CD151 knockdown cell α6 integrin is sensitive to actin disruption but desensitized to talin knockdown or phorbol ester stimulation, indicating dysregulation. Both phorbol ester and EGF stimulate cell spreading and promote α6 RCD in control cells. By contrast, CD151-ablated cells retain EGF effects but lose phorbol-ester-stimulated spreading and α6 RCD. For α6 integrins, physical association with CD151 promotes α6 RCD, in support of α6-mediated cable formation and adhesion. By comparison, for integrins not associated with CD151 (e.g. αv integrins), CD151 affects neither diffusion mode nor αv function. Hence, CD151 support of α6 RCD is specific and functionally relevant, and probably underlies diverse CD151 functions in skin, kidney and cancer cells.
Oncogenesis | 2017
B. Xu; J. Lefringhouse; Zeyi Liu; Dava West; L.A. Baldwin; C. Ou; Li Chen; Dana Napier; Luksana Chaiswing; Lawrence D. Brewer; D. St. Clair; Olivier Thibault; J.R. van Nagell; Binhua P. Zhou; Ronny Drapkin; Jian-an Huang; Michael Lu; Frederick R. Ueland; Xiuwei H. Yang
Integrins, a family of heterodimeric receptors for extracellular matrix, are promising therapeutic targets for ovarian cancer, particularly high-grade serous-type (HGSOC), as they drive tumor cell attachment, migration, proliferation and survival by activating focal adhesion kinase (FAK)-dependent signaling. Owing to the potential off-target effects of FAK inhibitors, disruption of the integrin signaling axis remains to be a challenge. Here, we tackled this barrier by screening for inhibitors being functionally cooperative with small-molecule VS-6063, a phase II FAK inhibitor. From this screening, JQ1, a potent inhibitor of Myc oncogenic network, emerged as the most robust collaborator. Treatment with a combination of VS-6063 and JQ1 synergistically caused an arrest of tumor cells at the G2/M phase and a decrease in the XIAP-linked cell survival. Our subsequent mechanistic analyses indicate that this functional cooperation was strongly associated with the concomitant disruption of activation or expression of FAK and c-Myc as well as their downstream signaling through the PI3K/Akt pathway. In line with these observations, we detected a strong co-amplification or upregulation at genomic or protein level for FAK and c-Myc in a large portion of primary tumors in the TCGA or a local HGSOC patient cohort. Taken together, our results suggest that the integrin–FAK signaling axis and c-Myc synergistically drive cell proliferation, survival and oncogenic potential in HGSOC. As such, our study provides key genetic, functional and signaling bases for the small-molecule-based co-targeting of these two distinct oncogenic drivers as a new line of targeted therapy against human ovarian cancer.
Oncotarget | 2015
Pengcheng Zhou; Sonia F. Erfani; Zeyi Liu; Changhe Jia; Yecang Chen; Bingwei Xu; Xinyu Deng; Jose E. Alfáro; Li Chen; Dana Napier; Michael Lu; Jian-an Huang; Chunming Liu; Olivier Thibault; Rosalind A. Segal; Binhua P. Zhou; Natasha Kyprianou; Craig Horbinski; Xiuwei H. Yang
Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma.
Molecular Carcinogenesis | 2016
Mei Xu; Siying Wang; Yuanlin Qi; Li Chen; Jacqueline A. Frank; Xiuwei H. Yang; Zhuo Zhang; Xianglin Shi; Jia Luo
Epidemiological studies demonstrate that alcohol consumption is associated with an increased risk of colorectal cancer (CRC). In addition to promoting carcinogenesis, alcohol may also accelerate the progression of existing CRC. We hypothesized that alcohol may enhance the aggressiveness of CRC. In this study, we investigated the effect of alcohol on the migration/invasion and metastasis of CRC. Alcohol increased the migration/invasion of colorectal cancer cells (DLD1, HCT116, HT29, and SW480) in a concentration‐dependent manner. Among these colon cancer cell lines, HCT116 cells were most responsive while HT29 cells were the least responsive to ethanol‐stimulated cell migration/invasion. These in vitro results were supported by animal studies which demonstrated that ethanol enhanced the metastasis of colorectal cancer cells to the liver and lung. Monocyte chemoattractant protein‐1 (MCP‐1) is a chemokine that plays an important role in regulating tumor microenvironment and metastasis. Alcohol increased the expression of MCP‐1 and its receptor CCR2 at both protein and mRNA levels. The pattern of alcohol‐induced alterations in MCP‐1 expression was consistent with its effect on migration/invasion; HCT116 cells displayed the highest up‐regulation of MCP‐1/CCR2 in response to alcohol exposure. An antagonist of CCR2 blocked alcohol‐stimulated migration. Alcohol caused an initial cytosolic accumulation of β‐catenin and its subsequent nuclear translocation by inhibiting GSK3β activity. Alcohol stimulated the activity of MCP‐1 gene promoter in a β‐catenin‐dependent manner. Furthermore, knock‐down of MCP‐1/CCR2 or β‐catenin was sufficient to inhibit alcohol‐induced cell migration/invasion. Together, these results suggested that alcohol may promote the metastasis of CRC through modulating GSK3β/β‐catenin/MCP‐1 pathway.
Oncotarget | 2016
Mei Xu; Siying Wang; Zhenhua Ren; Jacqueline A. Frank; Xiuwei H. Yang; Zhuo Zhang; Zun-Ji Ke; Xianglin Shi; Jia Luo
Both epidemiological and experimental studies suggest that ethanol may enhance aggressiveness of breast cancer. We have previously demonstrated that short term exposure to ethanol (12–48 hours) increased migration/invasion in breast cancer cells overexpressing ErbB2, but not in breast cancer cells with low expression of ErbB2, such as MCF7, BT20 and T47D breast cancer cells. In this study, we showed that chronic ethanol exposure transformed breast cancer cells that were not responsive to short term ethanol treatment to a more aggressive phenotype. Chronic ethanol exposure (10 days - 2 months) at 100 (22 mM) or 200 mg/dl (44 mM) caused the scattering of MCF7, BT20 and T47D cell colonies in a 3-dimension culture system. Chronic ethanol exposure also increased colony formation in an anchorage-independent condition and stimulated cell invasion/migration. Chronic ethanol exposure increased cancer stem-like cell (CSC) population by more than 20 folds. Breast cancer cells exposed to ethanol in vitro displayed a much higher growth rate and metastasis in mice. Ethanol selectively activated p38γ MAPK and RhoC but not p38α/β in a concentration-dependent manner. SP-MCF7 cells, a derivative of MCF7 cells which compose mainly CSC expressed high levels of phosphorylated p38γ MAPK. Knocking-down p38γ MAPK blocked ethanol-induced RhoC activation, cell scattering, invasion/migration and ethanol-increased CSC population. Furthermore, knocking-down p38γ MAPK mitigated ethanol-induced tumor growth and metastasis in mice. These results suggest that chronic ethanol exposure can enhance the aggressiveness of breast cancer by activating p38γ MAPK/RhoC pathway.
Experimental Dermatology | 2015
Marian Novak; Mary K. Leonard; Xiuwei H. Yang; Anjan Kowluru; Alexey M. Belkin; David M. Kaetzel
Expression of the metastasis suppressor NME1 in melanoma is associated with reduced cellular motility and invasion in vitro and metastasis in vivo, but the underlying molecular mechanisms are not completely understood. Herein, we report a novel mechanism through which NME1 controls melanoma cell morphology via upregulation of the extracellular matrix (ECM) protein fibronectin. Expression of NME1 strongly suppressed cell motility in melanoma cell lines 1205LU and M14. The resulting sedentary phenotype was associated with a more flattened appearance and marked increases in actin stress fibre and focal adhesion formation. NME1‐induced focal adhesions were colocalized with dense deposits of fibronectin, which were absent or minimal in the corresponding NME1‐deficient parental lines. NME1 was a strong inducer of fibronectin mRNA and protein expression, shown with reciprocal approaches of forced NME1 expression and shRNA‐mediated knock‐down. Increased synthesis and ECM deposition of fibronectin was necessary for NME1‐induced cell spreading, as knock‐down of fibronectin opposed the effects of NME1 on cell morphology. Fibronectin knock‐down also reversed the ability of NME1 to promote aggregation when cells were plated on a non‐adherent substratum. Similarly, inhibiting activation of the fibronectin receptor integrin α4β1 with an anti‐α4 antibody reversed the motility‐suppressing effect of NME1. A positive correlation was observed between NME1 and fibronectin mRNA in clinical biopsies of normal skin, benign nevi and primary melanomas, but not in metastatic forms, suggesting the NME1/fibronectin axis represents a barrier to melanoma progression. In summary, these findings indicate fibronectin is an important effector of the motility‐suppressing function of NME1 in melanoma cells.