Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuxia Qu is active.

Publication


Featured researches published by Xiuxia Qu.


Cell Stem Cell | 2008

Generation of Induced Pluripotent Stem Cells from Adult Rhesus Monkey Fibroblasts

Haisong Liu; Fangfang Zhu; Jun Yong; Pengbo Zhang; Pingping Hou; Honggang Li; Wei Jiang; Jun Cai; Meng Liu; Kai Cui; Xiuxia Qu; Tingting Xiang; Danyu Lu; Xiaochun Chi; Weizhi Ji; Mingxiao Ding; Hongkui Deng

Induced pluripotent stem (iPS) cells can be generated from somatic cells by transduction with several transcription factors in mouse and human. However, direct reprogramming in other species has not been reported. Here, we generated monkey iPS cells by retrovirus-mediated introduction of monkey transcription factors OCT4, SOX2, KLF4, and c-MYC.


Journal of Biological Chemistry | 2007

Regulation of Apoptosis and Differentiation by p53 in Human Embryonic Stem Cells

Han Qin; Tianxin Yu; Tingting Qing; Yanxia Liu; Yang Zhao; Jun Cai; Jian Li; Zhihua Song; Xiuxia Qu; Peng Zhou; Jiong Wu; Mingxiao Ding; Hongkui Deng

The essentially infinite expansion potential and pluripotency of human embryonic stem cells (hESCs) makes them attractive for cell-based therapeutics. In contrast to mouse embryonic stem cells (mESCs), hESCs normally undergo high rates of spontaneous apoptosis and differentiation, making them difficult to maintain in culture. Here we demonstrate that p53 protein accumulates in apoptotic hESCs induced by agents that damage DNA. However, despite the accumulation of p53, it nevertheless fails to activate the transcription of its target genes. This inability of p53 to activate its target genes has not been observed in other cell types, including mESCs. We further demonstrate that p53 induces apoptosis of hESCs through a mitochondrial pathway. Reducing p53 expression in hESCs in turn reduces both DNA damage-induced apoptosis as well as spontaneous apoptosis. Reducing p53 expression also reduces spontaneous differentiation and slows the differentiation rate of hESCs. Our studies reveal the important roles of p53 as a critical mediator of human embryonic stem cells survival and differentiation.


Biochemical and Biophysical Research Communications | 2004

Expression cloning of functional receptor used by SARS coronavirus.

Peigang Wang; Jian Chen; Aihua Zheng; Yuchun Nie; Xuanling Shi; Wei Wang; Guangwen Wang; Min Luo; Huijun Liu; Lei Tan; Xijun Song; Zai Wang; Xiaolei Yin; Xiuxia Qu; Xiaojing Wang; Tingting Qing; Mingxiao Ding; Hongkui Deng

Abstract We have expressed a series of truncated spike (S) glycoproteins of SARS-CoV and found that the N-terminus 14–502 residuals were sufficient to bind to SARS-CoV susceptible Vero E6 cells. With this soluble S protein fragment as an affinity ligand, we screened HeLa cells transduced with retroviral cDNA library from Vero E6 cells and obtained a HeLa cell clone which could bind with the S protein. This cell clone was susceptible to HIV/SARS pseudovirus infection and the presence of a functional receptor for S protein in this cell clone was confirmed by the cell–cell fusion assay. Further studies showed the susceptibility of this cell was due to the expression of endogenous angiotensin-converting enzyme 2 (ACE2) which was activated by inserted LTR from retroviral vector used for expression cloning. When human ACE2 cDNA was transduced into NIH3T3 cells, the ACE2 expressing NIH3T3 cells could be infected with HIV/SARS pseudovirus. These data clearly demonstrated that ACE2 was the functional receptor for SARS-CoV.


Journal of Virology | 2004

Identification of an Antigenic Determinant on the S2 Domain of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Capable of Inducing Neutralizing Antibodies

Hong Zhang; Guangwen Wang; Jian Li; Yuchun Nie; Xuanling Shi; Gewei Lian; Wei Wang; Xiaolei Yin; Yang Zhao; Xiuxia Qu; Mingxiao Ding; Hongkui Deng

ABSTRACT Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a newly identified coronavirus (CoV), SARS-CoV. The spike (S) glycoprotein of CoV is the major structural protein responsible for induction of host immune response and virus neutralization by antibodies. Hence, knowledge of neutralization determinants on the S protein is helpful for designing protective vaccines. To analyze the antigenic structure of the SARS-CoV S2 domain, the carboxyl-terminal half of the S protein, we first used sera from convalescent SARS patients to test the antigenicity of 12 overlapping fragments spanning the entire S2 and identified two antigenic determinants (Leu 803 to Ala 828 and Pro 1061 to Ser 1093). To determine whether neutralizing antibodies can be elicited by these two determinants, we immunized animals and found that both of them could induce the S2-specific antisera. In some animals, however, only one determinant (Leu 803 to Ala 828) was able to induce the antisera with the binding ability to the native S protein and the neutralizing activity to the SARS-CoV pseudovirus. This determinant is highly conserved across different SARS-CoV isolates. Identification of a conserved antigenic determinant on the S2 domain of the SARS-CoV S protein, which has the potential for inducing neutralizing antibodies, has implications in the development of effective vaccines against SARS-CoV.


Journal of Biological Chemistry | 2005

Identification of Two Critical Amino Acid Residues of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Its Variation in Zoonotic Tropism Transition via a Double Substitution Strategy

Xiuxia Qu; Pei Hao; Xijun Song; Siming Jiang; Yanxia Liu; Peigang Wang; Xi Rao; Huai-Dong Song; Wang S; Yu Zuo; Aihua Zheng; Min Luo; Hualin Wang; Fei Deng; Hanzhong Wang; Zhihong Hu; Mingxiao Ding; Guoping Zhao; Hongkui Deng

Severe acute respiratory syndrome coronavirus (SARS-CoV) is a recently identified human coronavirus. The extremely high homology of the viral genomic sequences between the viruses isolated from human (huSARS-CoV) and those of palm civet origin (pcSARS-CoV) suggested possible palm civet-to-human transmission. Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism. Using the single-round infection assay, we found that a two-amino acid substitution (N479K/T487S) of a huSARS-CoV for those of pcSARS-CoV almost abolished its infection of human cells expressing the SARS-CoV receptor ACE2 but no effect upon the infection of mouse ACE2 cells. Although single substitution of these two residues had no effects on the infectivity of huSARS-CoV, these recombinant S proteins bound to human ACE2 with different levels of reduced affinity, and the two-amino acid-substituted S protein showed extremely low affinity. On the contrary, substitution of these two amino acid residues of pcSARS-CoV for those of huSRAS-CoV made pcSARS-CoV capable of infecting human ACE2-expressing cells. These results suggest that amino acid residues at position 479 and 487 of the S protein are important determinants for SARS-CoV tropism and animal-to-human transmission.


Journal of Virology | 2004

Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells

Ling Yi; Zhengquan Li; Kehu Yuan; Xiuxia Qu; Jian Chen; Guangwen Wang; Hong Zhang; Hongpeng Luo; Lili Zhu; Pengfei Jiang; Lirong Chen; Yan Shen; Min Luo; Guoying Zuo; Jianhe Hu; Deliang Duan; Yuchun Nie; Xuanling Shi; Wei Wang; Yang Han; Taisheng Li; Yuqing Liu; Mingxiao Ding; Hongkui Deng; Xiaojie Xu

ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) is the pathogen of SARS, which caused a global panic in 2003. We describe here the screening of Chinese herbal medicine-based, novel small molecules that bind avidly with the surface spike protein of SARS-CoV and thus can interfere with the entry of the virus to its host cells. We achieved this by using a two-step screening method consisting of frontal affinity chromatography-mass spectrometry coupled with a viral infection assay based on a human immunodeficiency virus (HIV)-luc/SARS pseudotyped virus. Two small molecules, tetra-O-galloyl-β-d-glucose (TGG) and luteolin, were identified, whose anti-SARS-CoV activities were confirmed by using a wild-type SARS-CoV infection system. TGG exhibits prominent anti-SARS-CoV activity with a 50% effective concentration of 4.5 μM and a selective index of 240.0. The two-step screening method described here yielded several small molecules that can be used for developing new classes of anti-SARS-CoV drugs and is potentially useful for the high-throughput screening of drugs inhibiting the entry of HIV, hepatitis C virus, and other insidious viruses into their host cells.


Biochemical and Biophysical Research Communications | 2004

Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein

Kehu Yuan; Ling Yi; Jian Chen; Xiuxia Qu; Tingting Qing; Xi Rao; Pengfei Jiang; Jianhe Hu; Zikai Xiong; Yuchun Nie; Xuanling Shi; Wei Wang; Chen Ling; Xiaolei Yin; Keqiang Fan; Luhua Lai; Mingxiao Ding; Hongkui Deng

Abstract Heptad repeat regions (HR1 and HR2) are highly conserved sequences located in the glycoproteins of enveloped viruses. They form a six-helix bundle structure and are important in the process of virus fusion. Peptides derived from the HR regions of some viruses have been shown to inhibit the entry of these viruses. SARS-CoV was also predicted to have HR1 and HR2 regions in the S2 protein. Based on this prediction, we designed 25 peptides and screened them using a HIV-luc/SARS pseudotyped virus assay. Two peptides, HR1-1 and HR2-18, were identified as potential inhibitors, with EC50 values of 0.14 and 1.19μM, respectively. The inhibitory effects of these peptides were validated by the wild-type SARS-CoV assay. HR1-1 and HR2-18 can serve as functional probes for dissecting the fusion mechanism of SARS-CoV and also provide the potential of further identifying potent inhibitors for SARS-CoV entry.


Journal of Virology | 2008

Difference in Receptor Usage between Severe Acute Respiratory Syndrome (SARS) Coronavirus and SARS-Like Coronavirus of Bat Origin

Wuze Ren; Xiuxia Qu; Wendong Li; Zhenggang Han; Meng Yu; Peng Zhou; Shuyi Zhang; Lin-Fa Wang; Hongkui Deng; Zhengli Shi

ABSTRACT Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.


Biochemical and Biophysical Research Communications | 2004

Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression

Yuchun Nie; Peigang Wang; Xuanling Shi; Guangwen Wang; Jian Chen; Aihua Zheng; Wei Wang; Zai Wang; Xiuxia Qu; Min Luo; Lei Tan; Xijun Song; Xiaolei Yin; Jianguo Chen; Mingxiao Ding; Hongkui Deng

Abstract Studies of SARS coronavirus (SARS-CoV)—the causative agent of severe acute respiratory syndrome (SARS)—have been hampered by its high transmission rate and the pathogenicity of this virus. To permit analysis of the host range and entry mechanism of SARS-CoV, we incorporated the humanized SARS-CoV spike (S) glycoprotein into HIV particles to generate a highly infectious SARS-CoV pseudotyped virus. The infection on Vero E6—a permissive cell line to SARS-CoV—could be neutralized by sera from convalescent SARS patients, and the entry was a pH-dependent process. With these highly infectious SARS-CoV pseudotypes, several cell lines derived from various tissues were revealed as susceptible to SARS-CoV, which were highly corresponding to the expression pattern of virus’s receptor angiotensin-converting enzyme 2 (ACE2). In addition, we also demonstrated angiotensin 1 converting enzyme (ACE)—the homologue of ACE2 could not function as a receptor for SARS-CoV.


Virology | 2008

Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2

Joerg Glende; Christel Schwegmann-Wessels; Marwan Alfalah; Susanne Pfefferle; Xiuxia Qu; Hongkui Deng; Christian Drosten; Hassan Y. Naim; Georg Herrler

Abstract Cholesterol present in the plasma membrane of target cells has been shown to be important for the infection by SARS-CoV. We show that cholesterol depletion by treatment with methyl-β-cyclodextrin (mβCD) affects infection by SARS-CoV to the same extent as infection by vesicular stomatitis virus-based pseudotypes containing the surface glycoprotein S of SARS-CoV (VSV-ΔG-S). Therefore, the role of cholesterol for SARS-CoV infection can be assigned to the S protein and is unaffected by other coronavirus proteins. There have been contradictory reports whether or not angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV, is present in detergent-resistant membrane domains. We found that ACE2 of both Vero E6 and Caco-2 cells co-purifies with marker proteins of detergent-resistant membranes supporting the notion that cholesterol-rich microdomains provide a platform facilitating the efficient interaction of the S protein with the cellular receptor ACE2. To understand the involvement of cholesterol in the initial steps of the viral life cycle, we applied a cell-based binding assay with cells expressing the S protein and cells containing angiotensin-converting enzyme 2 (ACE2). Alternatively, we used a soluble S protein as interaction partner. Depletion of cholesterol from the ACE2-expressing cells reduced the binding of S-expressing cells by 50% whereas the binding of soluble S protein was not affected. This result suggests that optimal infection requires a multivalent interaction between viral attachment protein and cellular receptors.

Collaboration


Dive into the Xiuxia Qu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Chen

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge