Xiuying Bai
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiuying Bai.
American Journal of Physiology-endocrinology and Metabolism | 2009
Xiuying Bai; Qiu Dinghong; Dengshun Miao; David Goltzman; Andrew C. Karaplis
Transgenic mice overexpressing fibroblast growth factor (FGF23) (R176Q) (F(Tg)) exhibit biochemical {hypophosphatemia, phosphaturia, abnormal 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] metabolism} and skeletal (rickets and osteomalacia) abnormalities attributable to FGF23 action. In vitro studies now implicate the aging-related factor Klotho in the signaling mechanism of FGF23. In this study, we used a mouse genetic approach to validate in vivo the pivotal role of Klotho in the metabolic and skeletal derangements associated with FGF23 (R176Q) overexpression. To this end, we crossed mice heterozygous for the hypomorphic Klotho allele (Kl(+/-)) to F(Tg) mice and obtained F(Tg) transgenic mice homozygous for the Kl-hypomorphic allele (F(Tg)/Kl(-/-)). Mice were killed on postnatal day 50, and serum and tissues were procured for analysis and comparison with F(Tg), wild-type, and Kl(-/-) controls. From 4 wk onward, F(Tg)/Kl(-/-) mice were clearly distinguishable from F(Tg) mice and exhibited a striking phenotypic resemblance to the Kl(-/-) controls. Serum analysis for calcium, phosphorus, parathyroid hormone, 1,25(OH)(2)D(3), and alkaline phosphatase activity confirmed the biochemical similarity between the F(Tg)/Kl(-/-) and Kl(-/-) mice and their distinctness from the F(Tg) controls. The characteristic skeletal changes associated with FGF23 (R176Q) overexpression were also dramatically reversed by the absence of Klotho. Hence the wide, unmineralized growth plates and the osteomalacic abnormalities apparent in trabecular and cortical bone were completely reversed in the F(Tg)/Kl(-/-) mice. Nevertheless, independent actions of Klotho on bone were suggested as manifested by alterations in mineralized bone, and in cortical bone volume which were observed in both the Kl(-/-) and F(Tr)/Kl(-/-) mutants. In summary, our findings substantiate in vivo the essential role of Klotho in the mechanism of action of FGF23 in view of the fact that Klotho ablation converts the biochemical and skeletal manifestations resulting from FGF23 overexpression to a phenotype consistent with Klotho deficiency.
Journal of Clinical Investigation | 2016
Xiuying Bai; Dengshun Miao; Sophia Xiao; Dinghong Qiu; René St-Arnaud; Martin Petkovich; Ajay Gupta; David Goltzman; Andrew C. Karaplis
CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment.
Endocrinology | 2012
Andrew C. Karaplis; Xiuying Bai; Jean-Pierre Falet; Carolyn M. Macica
We have previously confirmed a paradoxical mineralizing enthesopathy as a hallmark of X-linked hypophosphatemia. X-linked hypophosphatemia is the most common of the phosphate-wasting disorders mediated by elevated fibroblast growth factor 23 (FGF23) and occurs as a consequence of inactivating mutations of the PHEX gene product. Despite childhood management of the disease, these complications of tendon and ligament insertion sites account for a great deal of the diseases morbidity into adulthood. It is unclear whether the enthesopathy occurs in other forms of renal phosphate-wasting disorders attributable to high FGF23 levels. Here we describe two patients with autosomal recessive hypophosphatemic rickets due to the Met1Val mutation in dentin matrix acidic phosphoprotein 1 (DMP1). In addition to the biochemical and skeletal features of long-standing rickets with elevated FGF23 levels, these individuals exhibited severe, debilitating, generalized mineralized enthesopathy. These data suggest that enthesophytes are a feature common to FGF23-mediated phosphate-wasting disorders. To address this possibility, we examined a murine model of FGF23 overexpression using a transgene encoding the secreted form of human FGF23 (R176Q) cDNA (FGF23-TG mice). We report that FGF23-TG mice display a similar mineralizing enthesopathy of the Achilles and plantar facial insertions. In addition, we examined the impact of standard therapy for phosphate-wasting disorders on enthesophyte progression. We report that fibrochondrocyte hyperplasia persisted in Hyp mice treated with oral phosphate and calcitriol. In addition, treatment had the untoward effect of further exacerbating the mineralization of fibrochondrocytes that define the bone spur of the Achilles insertion. These studies support the need for newer interventions targeted at limiting the actions of FGF23 and minimizing both the toxicities and potential morbidities associated with standard therapy.
Brain Research | 2011
Peidang Liu; Ling Chen; Xiuying Bai; Andrew C. Karaplis; Dengshun Miao; Ning Gu
Fibroblast growth factor-23 (FGF-23) is a potent circulating phosphaturic factor associated with renal phosphate wasting. Effects of FGF-23 on skeleton, phosphate homeostasis, and cardiovascular system have been investigated; however, the effect of FGF-23 on the central nervous system (CNS) is unknown. To assess whether FGF-23 influences the function and structure of the CNS and whether the effect of FGF-23 on the CNS is mediated by FGF receptors directly or by hypophosphatemia indirectly, FGF-23 transgenic mice and their wild-type littermates were fed a normal diet or a high-phosphate diet containing a normal diet plus 1.25% phosphate in drinking water from weaning for 5weeks and the phenotypes of the CNS were compared between FGF-23 transgenic mice and their wild-type littermates on the same diet. At the end of this time period, transgenic animals on the normal diet showed impaired spatial learning and memory. Furthermore, these mice exhibited the impairment of long-term potentiation in hippocampal CA1 region, and the reduction of hippocampal adenosine-triphosphate content and of choline acetyltransferase-positive neurons in basal forebrain, possibly as pathogenetic factors contributing to the cognitive deficit. The central nervous phenotypes of transgenic mice were rescued following improved hypophosphatemia by the high-phosphate diet intake. This study demonstrates that FGF-23 overexpression can result in abnormalities in the CNS mediated by the secondary severe hypophosphatemia.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Peidang Liu; Xiuying Bai; Heming Wang; Andrew C. Karaplis; David Goltzman; Dengshun Miao
Fibroblast growth factor-23 (FGF-23) is a potent circulating phosphaturic factor associated with renal phosphate wasting. The effects of FGF-23 on skeletal and phosphate homeostasis have been investigated widely; however, the effect of FGF-23 on the cardiovascular system (CVS) is unknown. To assess whether FGF-23 influences the function and structure of the CVS and whether the effect of FGF-23 on the CVS is mediated by FGF receptors directly or indirectly by hypophosphatemia, FGF-23 transgenic mice and their wild-type littermates were fed a normal diet or a high-phosphate diet comprising a normal diet plus 1.25% phosphate in drinking water from weaning for 5 wk, and the phenotypes of the CVS were compared between FGF-23 transgenic mice and their wild-type littermates on the same diet. At the end of this time period, transgenic animals on the normal diet developed hypotension. The left ventricle was appropriately hypertrophic, and plasma catecholamine and renin-angiotensin system components were upregulated, indicating compensatory mechanisms in response to the hypotension. Transgenic mice also exhibited an impaired vascular reactivity and a downregulation of vasoconstrictor receptor gene expression, possibly as pathogenetic factors contributing to the hypotension. The high-phosphate diet improved the hypophosphatemia, resulting in a rescue of the cardiovascular phenotype. This study demonstrates that FGF-23 overexpression can result in abnormalities in the CVS and that the effect of FGF-23 overexpression on the CVS is mediated by the secondary severe hypophosphatemia.
Clinical and Experimental Pharmacology and Physiology | 2011
Ling Chen; Hong Liu; Wen Sun; Xiuying Bai; Andrew C. Karaplis; David Goltzman; Dengshun Miao
1. Though previous studies have shown that fibroblast growth factor 23 (FGF23) mRNA expression localizes in ameloblasts and odontoblasts in teeth, it is unclear what effect FGF23 overexpression has on dentin mineralization and dentinogenesis. Toward this end, the phenotypes of mandibles and teeth were compared between 6‐week‐old FGF23 transgenic mice and their wild‐type littermates by radiography, microcomputed tomography scanning, histology, histochemistry and immunohistochemistry.
American Journal of Physiology-renal Physiology | 2018
Dibyendu K. Panda; Xiuying Bai; Yves Sabbagh; Yan Zhang; Hans-Christian Zaun; Angeliki Karellis; Antonis E. Koromilas; Mark L. Lipman; Andrew C. Karaplis
Vascular calcification increases the risk of cardiovascular disease and death in patients with chronic kidney disease (CKD). Increased activity of mammalian target of rapamycin complex 1 (mTORC1) and endoplasmic reticulum (ER) stress-unfolded protein response (UPR) are independently reported to partake in the pathogenesis of vascular calcification in CKD. However, the association between mTORC1 activity and ER stress-UPR remains unknown. We report here that components of the uremic state [activation of the receptor for advanced glycation end products (RAGE) and hyperphosphatemia] potentiate vascular smooth muscle cell (VSMC) calcification by inducing persistent and exaggerated activity of mTORC1. This gives rise to prolonged and excessive ER stress-UPR as well as attenuated levels of sestrin 1 ( Sesn1) and Sesn3 feeding back to inhibit mTORC1 activity. Activating transcription factor 4 arising from the UPR mediates cell death via expression of CCAAT/enhancer-binding protein (c/EBP) homologous protein (CHOP), impairs the generation of pyrophosphate, a potent inhibitor of mineralization, and potentiates VSMC transdifferentiation to the osteochondrocytic phenotype. Short-term treatment of CKD mice with rapamycin, an inhibitor of mTORC1, or tauroursodeoxycholic acid, a bile acid that restores ER homeostasis, normalized mTORC1 activity, molecular markers of UPR, and calcium content of aortas. Collectively, these data highlight that increased and/or protracted mTORC1 activity arising from the uremic state leads to dysregulated ER stress-UPR and VSMC calcification. Manipulation of the mTORC1-ER stress-UPR pathway opens up new therapeutic strategies for the prevention and treatment of vascular calcification in CKD.
Archive | 2005
Dengshun Miao; Bin He; Beate Lanske; Xiuying Bai; Xin-Kang Tong; Geoffrey N. Hendy; David Goltzman; Andrew C. Karaplis
We have examined the role of parathyroid hormone (PTH) in the postnatal state in a mouse model of PTH-deficiency generated by targeting the Pth gene in ES cells. Mice homozygous for the ablated allele, when maintained on a normal calcium intake, developed hypocalcemia, hyperphosphatemia, and low circulating 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] levels consistent with primary hypoparathyroidism. Fertility in mutant females was diminished due to abnormal ovarian function manifested in part by impaired angiogenesis in the developing corpus luteum. Even in the presence of ovarian dysfunction, bone turnover was reduced and trabecular and cortical bone volume were increased in PTH-deficient mice. When placed on a low calcium diet, fertility in female mice was completely abolished. Moreover, renal 25-hydroxyvitamin D 1 alpha-hydroocylase (Cyp27bl) expression increased despite the absence of PTH, leading to a rise in circulating 1,25(OH)2D3 levels, marked osteodastogenesis, and profound bone resorption. These studies demonstrate the dependence of the reproductive and skeletal phenotype in animals with genetically depleted PTH on the external environment as well as on internal hormonal and ionic circulatory factors. They point to the importance of calcium balance in reproduction and show that while PTH action is the first defense against hypocalcemia, 1,25(OH)2D3 can be mobilized, even in the absence of PTH, to guard against extreme calcium deficiency.
Endocrinology | 2004
Xiuying Bai; Dengshun Miao; Jiarong Li; David Goltzman; Andrew C. Karaplis
Journal of Endocrinology | 2004
M Alexandra Sorocéanu; Dengshun Miao; Xiuying Bai; Hanyi Su; David Goltzman; Andrew C. Karaplis