Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiyan Yang is active.

Publication


Featured researches published by Xiyan Yang.


Journal of Experimental Botany | 2013

Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis

Xiyan Yang; Lichen Wang; Daojun Yuan; Keith Lindsey; Xianlong Zhang

MicroRNAs (miRNAs) are endogenous non-coding ~21 nucleotide RNAs that regulate gene expression at the transcriptional and post-transcriptional levels in plants and animals. They play an important role in development, abiotic stress, and pathogen responses. miRNAs with their targets have been widely studied in model plants, but limited knowledge is available on the small RNA population of cotton (Gossypium hirsutum)—an important economic crop, and global identification of related targets through degradome sequencing has not been developed previously. In this study, small RNAs and their targets were identified during cotton somatic embryogenesis (SE) through high-throughput small RNA and degradome sequencing, comparing seedling hypocotyl and embryogenic callus (EC) of G. hirsutum YZ1. A total of 36 known miRNA families were found to be differentially expressed, of which 19 miRNA families were represented by 29 precursors. Twenty-five novel miRNAs were identified. A total of 234 transcripts in EC and 322 transcripts in control (CK) were found to be the targets of 23 and 30 known miRNA families, respectively, and 16 transcripts were targeted by eight novel miRNAs. Interestingly, four trans-acting small interfering RNAs (tas3-siRNAs) were also found in degradome libraries, three of which perfectly matched their precursors. Several targets were further validated via RNA ligase-mediated rapid amplification of 5’ cDNA ends (RLM 5’-RACE). The profiling of the miRNAs and their target genes provides new information on the miRNAs network during cotton SE.


Scientific Reports | 2016

The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres

Daojun Yuan; Zhonghui Tang; Maojun Wang; Wenhui Gao; Lili Tu; Xin Jin; Ling-Ling Chen; Yonghui He; Lin Zhang; Longfu Zhu; Yang Li; Qiqi Liang; Zhongxu Lin; Xiyan Yang; Nian Liu; Shuangxia Jin; Yang Lei; Yuanhao Ding; Guoliang Li; Xiaoan Ruan; Yijun Ruan; Xianlong Zhang

Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus.


BMC Plant Biology | 2012

Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton

Xiyan Yang; Xianlong Zhang; Daojun Yuan; Fangyan Jin; Yunchao Zhang; Jiao Xu

BackgroundSomatic embryogenesis (SE), by which somatic cells of higher plants can dedifferentiate and reorganize into new plants, is a notable illustration of cell totipotency. However, the precise molecular mechanisms regulating SE remain unclear. To characterize the molecular events of this unique process, transcriptome analysis, in combination with biochemical and histological approaches, were conducted in cotton, a typical plant species in SE. Genome-wide profiling of gene expression allowed the identification of novel molecular markers characteristic of this developmental process.ResultsRNA-Seq was used to identify 5,076 differentially expressed genes during cotton SE. Expression profile and functional assignments of these genes indicated significant transcriptional complexity during this process, associated with morphological, histological changes and endogenous indole-3-acetic acid (IAA) alteration. Bioinformatics analysis showed that the genes were enriched for basic processes such as metabolic pathways and biosynthesis of secondary metabolites. Unigenes were abundant for the functions of protein binding and hydrolase activity. Transcription factor–encoding genes were found to be differentially regulated during SE. The complex pathways of auxin abundance, transport and response with differentially regulated genes revealed that the auxin-related transcripts belonged to IAA biosynthesis, indole-3-butyric acid (IBA) metabolism, IAA conjugate metabolism, auxin transport, auxin-responsive protein/indoleacetic acid-induced protein (Aux/IAA), auxin response factor (ARF), small auxin-up RNA (SAUR), Aux/IAA degradation, and other auxin-related proteins, which allow an intricate system of auxin utilization to achieve multiple purposes in SE. Quantitative real-time PCR (qRT-PCR) was performed on selected genes with different expression patterns and functional assignments were made to demonstrate the utility of RNA-Seq for gene expression profiles during cotton SE.ConclusionWe report here the first comprehensive analysis of transcriptome dynamics that may serve as a gene expression profile blueprint in cotton SE. Our main goal was to adapt the RNA-Seq technology to this notable development process and to analyse the gene expression profile. Complex auxin signalling pathway and transcription regulation were highlighted. Together with biochemical and histological approaches, this study provides comprehensive gene expression data sets for cotton SE that serve as an important platform resource for further functional studies in plant embryogenesis.


Plant Physiology | 2014

Sugar and auxin signaling pathways respond to high temperature stress during anther development as revealed by transcript profiling analysis in cotton

Ling Min; Yaoyao Li; Qin Hu; Longfu Zhu; Wenhui Gao; Yuanlong Wu; Yuanhao Ding; Shiming Liu; Xiyan Yang; Xianlong Zhang

Anther indehiscence at high temperatures is coordinately regulated by sugar and auxin. Male reproduction in flowering plants is highly sensitive to high temperature (HT). To investigate molecular mechanisms of the response of cotton (Gossypium hirsutum) anthers to HT, a relatively complete comparative transcriptome analysis was performed during anther development of cotton lines 84021 and H05 under normal temperature and HT conditions. In total, 4,599 differentially expressed genes were screened; the differentially expressed genes were mainly related to epigenetic modifications, carbohydrate metabolism, and plant hormone signaling. Detailed studies showed that the deficiency in S-ADENOSYL-l-HOMOCYSTEINE HYDROLASE1 and the inhibition of methyltransferases contributed to genome-wide hypomethylation in H05, and the increased expression of histone constitution genes contributed to DNA stability in 84021. Furthermore, HT induced the expression of CASEIN KINASEI (GhCKI) in H05, coupled with the suppression of starch synthase activity, decreases in glucose level during anther development, and increases in indole-3-acetic acid (IAA) level in late-stage anthers. The same changes also were observed in Arabidopsis (Arabidopsis thaliana) GhCKI overexpression lines. These results suggest that GhCKI, sugar, and auxin may be key regulators of the anther response to HT stress. Moreover, PHYTOCHROME-INTERACTING FACTOR genes (PIFs), which are involved in linking sugar and auxin and are regulated by sugar, might positively regulate IAA biosynthesis in the cotton anther response to HT. Additionally, exogenous IAA application revealed that high background IAA may be a disadvantage for late-stage cotton anthers during HT stress. Overall, the linking of HT, sugar, PIFs, and IAA, together with our previously reported data on GhCKI, may provide dynamic coordination of plant anther responses to HT stress.


Plant Biotechnology Journal | 2014

Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development.

Fangyan Jin; Lisong Hu; Daojun Yuan; Jiao Xu; Wenhui Gao; Liangrong He; Xiyan Yang; Xianlong Zhang

As a product of asexual reproduction in plants, the somatic embryo (SE) differentiates into a new plantlet via a zygotic embryogenesis-like process. Here, we present the phenotypic and cellular differences between SEs and zygotic embryos (ZEs) revealed by histological section scanning using three parallel development stages of the two types of embryos of cotton (Gossypium hirsutum cv. YZ1), including globular, torpedo and cotyledonary-stages. To identify the molecular characteristics of SE development in cotton, the digital gene expression system was used to profile the genes active during SE and ZE development. A total of 4242 differentially expressed genes (DEGs) were identified in at least one developmental stage. Expression pattern and functional classification analysis based on these DEGs reveals that SE development exhibits a transcriptional activation of stress responses. RT-PCR analysis further confirmed enhanced expression levels of stress-related genes in SEs than in ZEs. Experimental stress treatment, induced by NaCl and ABA, accelerated SE development and increased the transcription of genes related to stress response, in parallel with decelerated proliferation of embryogenic calluses under stress treatment. Our data reveal that SE development involves the activation of stress responses, which we suggest may regulate the balance between cell proliferation and differentiation. These results provide new insight into the molecular mechanisms of SE development and suggest strategies that can be used for regulating the developmental processes of somatic embryogenesis.


Nature Genetics | 2017

Asymmetric subgenome selection and cis -regulatory divergence during cotton domestication

Maojun Wang; Lili Tu; Min Lin; Zhongxu Lin; Pengcheng Wang; Qingyong Yang; Zhengxiu Ye; Chao Shen; Jianying Li; Lin Zhang; Xiaolin Zhou; Xinhui Nie; Zhonghua Li; Kai Guo; Yizan Ma; Cong Huang; Shuangxia Jin; Longfu Zhu; Xiyan Yang; Ling Min; Daojun Yuan; Qinghua Zhang; Keith Lindsey; Xianlong Zhang

Comparative population genomics offers an excellent opportunity for unraveling the genetic history of crop domestication. Upland cotton (Gossypium hirsutum) has long been an important economic crop, but a genome-wide and evolutionary understanding of the effects of human selection is lacking. Here, we describe a variation map for 352 wild and domesticated cotton accessions. We scanned 93 domestication sweeps occupying 74 Mb of the A subgenome and 104 Mb of the D subgenome, and identified 19 candidate loci for fiber-quality-related traits through a genome-wide association study. We provide evidence showing asymmetric subgenome domestication for directional selection of long fibers. Global analyses of DNase I–hypersensitive sites and 3D genome architecture, linking functional variants to gene transcription, demonstrate the effects of domestication on cis-regulatory divergence. This study provides new insights into the evolution of gene organization, regulation and adaptation in a major crop, and should serve as a rich resource for genome-based cotton improvement.


Journal of Experimental Botany | 2008

Expression profile analysis of genes involved in cell wall regeneration during protoplast culture in cotton by suppression subtractive hybridization and macroarray

Xiyan Yang; Lili Tu; Longfu Zhu; Lili Fu; Ling Min; Xianlong Zhang

The molecular mechanisms underlying cell wall biosynthesis are poorly understood. In this study, microscopic analysis showed that protoplasts generated a new cell wall within 48 h after transfer to a wall-regeneration medium. To identify genes related to cell wall biosynthesis in cotton, suppression subtractive hybridization was used to visualize differential gene expression at seven time points within the first 48 h. In total, 412 differentially expressed sequence tags (ESTs; >3-fold) were identified, and 210 unigenes were sequenced successfully. As confirmed by reverse-transcription PCR (RT-PCR) and real-time quantitative reverse-transcription PCR (QRT-PCR) analysis, the selected genes displayed complex expression patterns during cell wall regeneration from protoplasts and included most previously published cell-wall-associated genes. ESTs similar to cell-wall-protein genes, such as proline-rich protein (PRPL), glycine-rich protein (GRP), extension (EPR1), fasciclin-like arabinogalactan protein (FLA2), and expensing-like protein (EXLA and EXLB), which might participate in primary cell wall or secondary cell wall construction and modification, were up-regulated during cell wall regeneration from protoplasts. Sucrose synthase, an important enzyme in the sugar signalling pathway, played important roles in cellulose biosynthesis. Our findings also highlighted the function of some transcription factors during cell wall regeneration from protoplasts, including the squamosa promoter binding protein-like 14 (SPL14), NAC, Gbiaa-re, MYB, WRKY, swellmap 1 (SMP1), RAD5, and zinc finger family protein, as well as the enrichment of Ca2+-calmodulin signal molecules. On the basis of the gene expression profiles, a model of cell wall regeneration from protoplasts derived from cotton suspension cultures is proposed.


New Phytologist | 2014

The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production

Wenxin Tang; Lili Tu; Xiyan Yang; Jiafu Tan; Fenglin Deng; Juan Hao; Kai Guo; Keith Lindsey; Xianlong Zhang

Fiber elongation is the key determinant of fiber quality and output in cotton (Gossypium hirsutum). Although expression profiling and functional genomics provide some data, the mechanism of fiber development is still not well understood. Here, a gene encoding a calcium sensor, GhCaM7, was isolated based on its high expression level relative to other GhCaMs in fiber cells at the fast elongation stage. The level of expression of GhCaM7 in the wild-type and the fuzzless/lintless mutant correspond to the presence and absence, respectively, of fiber initials. Overexpressing GhCaM7 promotes early fiber elongation, whereas GhCaM7 suppression by RNAi delays fiber initiation and inhibits fiber elongation. Reactive oxygen species (ROS) play important roles in early fiber development. ROS induced by exogenous hydrogen peroxide (H2 O2 ) and Ca(2+) starvation promotes early fiber elongation. GhCaM7 overexpression fiber cells show increased ROS concentrations compared with the wild-type, while GhCaM7 RNAi fiber cells have reduced concentrations. Furthermore, we show that H2 O2 enhances Ca(2+) influx into the fiber and feedback-regulates the expression of GhCaM7. We conclude that GhCaM7, Ca(2+) and ROS are three important regulators involved in early fiber elongation. GhCaM7 might modulate ROS production and act as a molecular link between Ca(2+) and ROS signal pathways in early fiber development.


Biochemical and Biophysical Research Communications | 2013

Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants

Liangrong He; Xiyan Yang; Lichen Wang; Longfu Zhu; Ting Zhou; Jinwu Deng; Xianlong Zhang

Plant CIPKs were specific Ser/Thr protein kinases, which were activated through interaction with calcineurin B-like protein (CBL) containing four EF hands for Ca(2+) binding. The CBL/CIPK complexes play an important role in signal transduction in biotic and abiotic stresses, as well as developmental processes. Here a Ser/Thr protein kinase gene (defined as GhCIPK6), which was isolated from RNA-Seq profile during cotton somatic embryogenesis in our previous research was characterized. The GhCIPK6 gene contains an ORF of 1296 bp that putatively encodes a polypeptide of 431 amino acids with a predicted molecular mass of 48.46 kDa and isoelectric point of 9.12. Sequence alignment analysis confirmed that GhCIPK6 has no intron, and it was homologous to AtCIPK6. Expression analysis of the GhCIPK6 suggested that they might function in diverse tissues, including styles and anthers but not fibers. In addition, expression of the GhCIPK6 gene was induced by salt, drought and ABA treatments. Overexpression of GhCIPK6 significantly enhances the tolerance to salt, drought and ABA stresses in transgenic Arabidopsis, indicating that GhCIPK6 acts as a positive regulator in response to salt and drought stress, and is supposed to be a potential candidate gene to improve stress tolerance by genetic manipulation in cotton and other crops.


Plant Biotechnology Journal | 2011

GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton

Lisong Hu; Xiyan Yang; Daojun Yuan; Fanchang Zeng; Xianlong Zhang

The proteins of high-mobility group box (HmgB) family were involved in the regulation of transcription and other DNA-dependent processes. To investigate the function of HmgB proteins during cotton somatic embryogenesis (SE), four Gossypium hirsutum HmgB genes were characterized. The gene GhHmgB3 preferentially expressed in embryonic tissues and was studied in detail. RNA interference and over-expression was used to regulate the expression of GhHmgB3 during cotton SE by transforming both hypocotyl and embryogenic calli (ECs) via Agrobacterium tumefaciens. The GhHmgB3-deficient somatic cells of hypocotyls dedifferentiated more vigorously than the control cells, but they failed to differentiate to ECs. In another case, the proliferation and differentiation of GhHmgB3-deficient ECs were significantly improved, but failed to form plantlets. Over-expression of GhHmgB3 had no significant differences in callus initiation and differentiation compared with the control cell lines. The different expression genes between the control and GhHmgB3-deficient ECs were identified by Solexa sequencing technology. The bioinformatics analysis and experimental verification revealed series of abnormal mechanism associated with β-catenin signalling. These results in response to the down-regulation of GhHmgB3 revealed series of β-catenin-related mechanisms might be responsible for the deregulation of proliferation and differentiation of cells in cotton SE.

Collaboration


Dive into the Xiyan Yang's collaboration.

Top Co-Authors

Avatar

Xianlong Zhang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Longfu Zhu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ling Min

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Daojun Yuan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiao Xu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shuangxia Jin

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abid Ullah

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lichen Wang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lili Tu

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge