Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiyong Liu is active.

Publication


Featured researches published by Xiyong Liu.


Molecular Cancer Therapeutics | 2005

Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis in multiple myeloma.

Lijun Zhu; George Somlo; Bingsen Zhou; Jimin Shao; Victoria Bedell; Marilyn L. Slovak; Xiyong Liu; Jianhong Luo; Yun Yen

The presence of t(4;14)(p16.3;q32.3) in multiple myeloma cells results in dysregulated expression of the fibroblast growth factor receptor 3 (FGFR3). FGFR3 acts as an oncogene to promote multiple myeloma cell proliferation and antiapoptosis. These encourage the clinical development of FGFR3-specific inhibitors. Three short hairpin RNAs (shRNA) targeting different sites of FGFR3 were selected and subsequently transfected into KMS-11, OPM-2, and NCI-H929 human myeloma cell lines, all of which are characterized by t(4;14) and FGFR3 over expression. The combination of these three shRNAs can effectively inhibit FGFR3 expression in all three cell lines. Sequential immunocytochemistry/fluorescence in situ hybridization was employed to validate that the shRNAs specifically inhibited FGFR3 expression in OPM-2 cells. Decreased expression of B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL2) and myeloid cell leukemia sequence 1 (MCL1) proteins and increased staining of Annexin V–positive cells showed that inhibition of FGFR3 induces apoptosis. After confirming down-regulation of FGFR3 by real-time PCR, HU-133 plus 2.0 array was employed to compare the gene expression profile of shRNA-treated sample with that of the control. Besides the down-regulation of FGFR3, expression of the antiapoptotic genes CFLAR, BCL2, MCL1, and some members of NF-κB family decreased, whereas expression of the proapoptotic genes CYC, BID, CASP2, and CASP6 increased. Microarray results also revealed changes in genes previously implicated in multiple myeloma pathogenesis (RAS, RAF, IL-6R, and VEGF), as well as others (TLR4, KLF4, and GADD45A) not previously linked to multiple myeloma. Our observations indicate that shRNAs can specifically and effectively inhibit FGFR3 expression. This targeted approach may be worth testing in multiple myeloma patients with t(4;14) and FGFR3 overexpression in the future.


Clinical Cancer Research | 2011

Overexpression of HMGA2 Promotes Metastasis and Impacts Survival of Colorectal Cancers

Xiaochen Wang; Xiyong Liu; Angela Ying Jian Li; Lirong Chen; Lily L. Lai; Her Helen Lin; Shuya Hu; Lifang Yao; Jiaping Peng; Sofia Loera; Lijun Xue; Bingsen Zhou; Lun Zhou; Shu Zheng; Peiguo Chu; Suzhan Zhang; David K. Ann; Yun Yen

Purpose: This study aims to address the hypothesis that the high-mobility group A2 (HMGA2), an oncofetal protein, relates to survivability and serves as a prognostic biomarker for colorectal cancer (CRC). Experimental Design: This is a retroprospective multiple center study. The HMGA2 expression level was determined by performing immunohistochemistry on surgical tissue samples of 89 CRCs from a training set and 191 CRCs from a validation set. The Kaplan–Meier analysis and COX proportional hazard model were employed to analyze the survivability. Results: Multivariate logistic analysis indicated that the expression of HMGA2 significantly correlates with distant metastasis in training set (odds ratio, OR = 3.53, 95% CI: 1.37–9.70) and validation set (OR = 6.38, 95% CI: 1.47–43.95). Survival analysis revealed that the overexpression of HMGA2 is significantly associated with poor survival of CRC patients (P < 0.05). The adjusted HRs for overall survival were 2.38 (95% CI: 1.30–4.34) and 2.14 (95% CI: 1.21–3.79) in training and validation sets, respectively. Further investigation revealed that HMGA2 delays the clearance of γ-H2AX in HCT-116 and SW480 cells post γ-irradiation, which supports our finding that CRC patients with HMAG2-positive staining in primary tumors had augmented the efficacy of adjuvant radiotherapy (HR = 0.18, 95% CI: 0.04–0.63). Conclusion: Overexpression of HMGA2 is associated with metastasis and unequivocally occurred in parallel with reduced survival rates of patients with CRC. Therefore, HMGA2 may potentially serve as a biomarker for predicting aggressive CRC with poor survivability and as an indicator for better response of radiotherapy. Clin Cancer Res; 17(8); 2570–80. ©2011 AACR.


American Journal of Pathology | 2003

Down-regulation of growth arrest DNA damage-inducible gene 45β expression is associated with human hepatocellular carcinoma

Weihua Qiu; Donald David; Bingsen Zhou; Peiguo G. Chu; Bohe Zhang; M. Wu; Jiacheng Xiao; Tianquan Han; Zhenggang Zhu; Tianxiang Wang; Xiyong Liu; Richard Lopez; Paul Frankel; Ambrose Jong; Yun Yen

In this study, we describe the growth arrest DNA damage-inducible gene 45beta (GADD45beta), whose expression was significantly down-regulated in the hepatocellular carcinoma (HCC) microarray study and confirmed by Northern blot analysis. The results suggested that expression of GADD45beta was decreased in human liver cancer cell lines HepG2 and Hep3B, but not in normal human embryonic liver cell line CL-48 or normal liver tissue. Histochemistry study and real-time PCR further confirmed that GADD45beta staining in HCC was significantly decreased when compared to surrounding non-neoplastic liver tissue. In further studies of multiple human cancer tissues, GADD45beta strongly stained tissues such as colon cancer, breast cancer, prostate cancer, squamous cell cancer, lymphoma, and leiomyosarcoma, suggesting that the decreased expression of GADD45beta is specific to HCC. Eighty-five cases of primary HCC were further examined by immunohistochemistry and statistical analyses demonstrated that HCC scored lower than matched non-neoplastic liver tissues consistently and significantly. No staining occurred in 12.94% of HCC cases (score = 0, n = 11); 42.35% had weak staining (score = 1, n = 36); 27.06% had moderate staining (score = 2, n = 23); and 17.65% had staining as strong as normal tissue (score = 3, n = 15). Overall, surrounding non-neoplastic liver tissue was highly positive for GADD45beta compared to adjacent neoplastic liver tissues (P < 0.01). We further observed that down-regulation of GADD45beta expression was strongly correlated with differentiation (P < 0.01) and high nuclear grade (P < 0.01). Moreover, we found that expression of GADD45beta was inversely correlated to the presence of mutant p53 in HCC tissue (P < 0.05). Thus, the results of our study suggest that GADD45beta, which is down-regulated in most cases of HCC, remains an ideal candidate for development as a molecular marker in the diagnosis of HCC and as a potential therapeutic target.


American Journal of Pathology | 2004

Hypermethylation of Growth Arrest DNA Damage-Inducible Gene 45 β Promoter in Human Hepatocellular Carcinoma

Weihua Qiu; Bingsen Zhou; Hongzhi Zou; Xiyong Liu; Peiguo G. Chu; Richard Lopez; Jennifer Shih; Christopher P. Chung; Yun Yen

Growth arrest DNA damage-inducible gene 45 beta (GADD45beta) has been known to regulate cell growth, apoptotic cell death, and cellular response to DNA damage. Down-regulation of GADD45beta has been verified to be specific in hepatocellular cancer (HCC) and consistent with the p53 mutant, and degree of malignancy of HCC. This observation was further confirmed by eight HCC cell lines and paired human normal and HCC tumor tissues by Northern blot and immunohistochemistry. To better understand the transcription regulation, we cloned and characterized the active promoter region of GADD45beta in luciferase-expressing vector. Using the luciferase assay, three nuclear factor-kappaB binding sites, one E2F-1 binding site, and one putative inhibition region were identified in the proximal promoter of GADD45beta from -865/+6. Of interest, no marked putative binding sites could be identified in the inhibition region between -520/-470, which corresponds to CpG-rich region. The demethylating agent 5-Aza-dC was used and demonstrated restoration of the GADD45beta expression in HepG2 in a dose-dependent manner. The methylation status in the promoter was further examined in one normal liver cell, eight HCC cell lines, eight HCC tissues, and five corresponding nonneoplastic liver tissues. Methylation-specific polymerase chain reaction and sequencing of the sodium bisulfite-treated DNA from HCC cell lines and HCC samples revealed a high percentage of hypermethylation of the CpG islands. Comparatively, the five nonneoplastic correspondent liver tissues demonstrated very low levels of methylation. To further understand the functional role of GADD45beta under-expression in HCC the GADD45beta cDNA constructed plasmid was transfected into HepG2 (p53 WT) and Hep3B (p53 null) cells. The transforming growth factor-beta was assayed by enzyme-linked immunosorbent assay, which revealed a decrease to 40% in transfectant of HepG2, but no significant change in Hep3B transfectant. Whereas, Hep3B co-transfected with p53 and GADD45beta demonstrated significantly reduced transforming growth factor-beta. The colony formation was further examined and revealed a decrease in HepG2-GADD45beta transfectant and Hep3B-p53/GADD45beta co-transfectant. These findings suggested that methylation might play a crucial role in the epigenetic regulation of GADD45beta in hepatocyte transformation that may be directed by p53 status. Thus, our results provided a deeper understanding of the molecular mechanism of GADD45beta down-regulation in HCC.


Molecular Cancer | 2009

Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis.

Keqiang Zhang; Shuya Hu; Jun Wu; Linling Chen; Jianming Lu; Xiaochen Wang; Xiyong Liu; Bingsen Zhou; Yun Yen

BackgroundIn addition to its essential role in ribonucleotide reduction, ribonucleotide reductase (RNR) small subunit, RRM2, has been known to play a critical role in determining tumor malignancy. Overexpression of RRM2 significantly enhances the invasive and metastatic potential of tumor. Angiogenesis is critical to tumor malignancy; it plays an essential role in tumor growth and metastasis. It is important to investigate whether the angiogenic potential of tumor is affected by RRM2.ResultsWe examined the expression of antiangiogenic thrombospondin-1 (TSP-1) and proangiogenic vascular endothelial growth factor (VEGF) in two RRM2-overexpressing KB cells: KB-M2-D and KB-HURs. We found that TSP-1 was significantly decreased in both KB-M2-D and KB-HURs cells compared to the parental KB and mock transfected KB-V. Simultaneously, RRM2-overexpressing KB cells showed increased production of VEGF mRNA and protein. In contrast, attenuating RRM2 expression via siRNA resulted in a significant increased TSP-1 expression in both KB and LNCaP cells; while the expression of VEGF by the two cells was significantly decreased under both normoxia and hypoxia. In comparison with KB-V, overexpression of RRM2 had no significant effect on proliferation in vitro, but it dramatically accelerated in vivo subcutaneous growth of KB-M2-D. KB-M2-D possessed more angiogenic potential than KB-V, as shown in vitro by its increased chemotaxis for endothelial cells and in vivo by the generation of more vascularized tumor xenografts.ConclusionThese findings suggest a positive role of RRM2 in tumor angiogenesis and growth through regulation of the expression of TSP-1 and VEGF.


Proceedings of the National Academy of Sciences of the United States of America | 2008

ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage

Lufen Chang; Bingsen Zhou; Shuya Hu; Robin Guo; Xiyong Liu; Stephen N. Jones; Yun Yen

Ribonucleotide reductase small subunit p53R2 was identified as a p53 target gene that provides dNTP for DNA damage repair. However, the slow transcriptional induction of p53R2 in RNA may not be rapid enough for prompt DNA damage repair, which has to occur within a few hours of damage. Here, we demonstrate that p53R2 becomes rapidly phosphorylated at Ser72 by ataxia telangiectasia mutated (ATM) within 30 min after genotoxic stress. p53R2, as well as its heterodimeric partner RRM1, are associated with ATM in vivo. Mutational studies further indicate that ATM-mediated Ser72 phosphorylation is essential for maintaining p53R2 protein stability and conferring resistance to DNA damage. The mutation of Ser72 on p53R2 to alanine results in the hyperubiquitination of p53R2 and reduces p53R2 stability. MDM2, a ubiquitin ligase for p53, interacts and facilitates ubiquitination of the S72A-p53R2 mutant more efficiently than WT-p53R2 after DNA damage in vivo. Our results strongly suggest a novel mechanism for the regulation of p53R2 activity via ATM-mediated phosphorylation at Ser72 and MDM2-dependent turnover of p53R2 dephosphorylated at the same residue.


Molecular Endocrinology | 2012

Hepatocarcinogenesis in FXR−/− Mice Mimics Human HCC Progression That Operates through HNF1α Regulation of FXR Expression

Nian Liu; Zhipeng Meng; Guiyu Lou; Weiping Zhou; Xiaoqiong Wang; Yunfeng Zhang; Lisheng Zhang; Xiyong Liu; Yun Yen; Lily L. Lai; Barry M. Forman; Zhonggao Xu; Rongzhen Xu; Wendong Huang

Farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4) is a member of nuclear hormone receptor superfamily, which plays essential roles in metabolism of bile acids, lipid, and glucose. We previously showed spontaneously hepatocarcinogenesis in aged FXR(-/-) mice, but its relevance to human hepatocellular carcinoma (HCC) is unclear. Here, we report a systematical analysis of hepatocarcinogenesis in FXR(-/-) mice and FXR expression in human liver cancer. In this study, liver tissues obtained from FXR(-/-) and wild-type mice at different ages were compared by microarray gene profiling, histological staining, chemical analysis, and quantitative real-time PCR. Primary hepatic stellate cells and primary hepatocytes isolated from FXR(-/-) and wild-type mice were also analyzed and compared. The results showed that the altered genes in FXR(-/-) livers were mainly related to metabolism, inflammation, and fibrosis, which suggest that hepatocarcinogenesis in FXR(-/-) mice recapitulated the progression of human liver cancer. Indeed, FXR expression in human HCC was down-regulated compared with normal liver tissues. Furthermore, the proinflammatory cytokines, which were up-regulated in human HCC microenvironment, decreased FXR expression by inhibiting the transactivity of hepatic nuclear factor 1α on FXR gene promoter. Our study thereby demonstrates that the down-regulation of FXR has an important role in human hepatocarcinogenesis and FXR(-/-) mice provide a unique animal model for HCC study.


Clinical Cancer Research | 2006

Metastasis-Suppressing Potential of Ribonucleotide Reductase Small Subunit p53R2 in Human Cancer Cells

Xiyong Liu; Bingsen Zhou; Lijun Xue; Jennifer Shih; Karen Tye; Wesley Lin; Christina Qi; Peiguo Chu; Frank Un; Wei Wen; Yun Yen

Purpose: Previous gene transfection studies have shown that the accumulation of human ribonucleotide reductase small subunit M2 (hRRM2) enhances cellular transformation, tumorigenesis, and malignancy potential. The latest identified small subunit p53R2 has 80% homology to hRRM2. Here, we investigate the role of p53R2 in cancer invasion and metastasis. Experimental Design: The immunohistochemistry was conducted on a tissue array including 49 primary and 59 metastatic colon adenocarcinoma samples to determine the relationship between p53R2 expression and metastasis. A Matrigel invasive chamber was used to sort the highly invasive cells and to evaluate the invasion potential of p53R2. Results: Univariate and multivariate analyses revealed that p53R2 is negatively related to the metastasis of colon adenocarcinoma samples (odds ratio, 0.23; P < 0.05). The decrease of p53R2 is associated with cell invasion potential, which was observed in both p53 wild-type (KB) and mutant (PC-3 and Mia PaCa-2) cell lines. An increase in p53R2 expression by gene transfection significantly reduced the cellular invasion potential to 54% and 30% in KB and PC-3 cells, respectively, whereas inhibition of p53R2 by short interfering RNA resulted in a 3-fold increase in cell migration. Conclusions: Opposite regulation of hRRM2 and p53R2 in invasion potential might play a critical role in determining the invasion and metastasis phenotype in cancer cells. The expression level of ribonucleotide reductase small subunits may serve as a biomarker to predict the malignancy potential of human cancers in the future.


Cancer Research | 2011

Ribonucleotide Reductase Small Subunit M2B Prognoses Better Survival in Colorectal Cancer

Xiyong Liu; Lily L. Lai; Xiaochen Wang; Lijun Xue; Sofia Leora; Jun Wu; Shuya Hu; Keqiang Zhang; Mei-Ling Kuo; Lun Zhou; Hang Zhang; Yafan Wang; Yan Wang; Bingsen Zhou; Rebecca A. Nelson; Shu Zheng; Suzhan Zhang; Peiguo G. Chu; Yun Yen

Ribonucleotide reductase subunit RRM2B (p53R2) has been reported to suppress invasion and metastasis in colorectal cancer (CRC). Here, we report that high levels of RRM2B expression are correlated with markedly better survival in CRC patients. In a fluorescence-labeled orthotopic mouse xenograft model, we confirmed that overexpression of RRM2B in nonmetastatic CRC cells prevented lung and/or liver metastasis, relative to control cells that did metastasize. Clinical outcome studies were conducted on a training set with 103 CRCs and a validation set with 220 CRCs. All participants underwent surgery with periodic follow-up to determine survivability. A newly developed specific RRM2B antibody was employed to carry out immunohistochemistry for determining RRM2B expression levels on tissue arrays. In the training set, the Kaplan-Meier and multivariate Cox analysis revealed that RRM2B is associated with better survival of CRCs, especially in stage IV patients (HR = 0.40; 95% CI = 0.18-0.86, P = 0.016). In the validation set, RRM2B was negatively related to tumor invasion (OR = 0.45, 95% CI = 0.19-0.99, P = 0.040) and lymph node involvement (OR = 0.48, 95% CI = 0.25-0.92, P = 0.026). Furthermore, elevated expression of RRM2B was associated with better prognosis in this set as determined by multivariate analyses (HR = 0.48, 95% CI = 0.26-0.91, P = 0.030). Further investigations revealed that RRM2B was correlated with better survival of CRCs with advanced stage III and IV tumors rather than earlier stage I and II tumors. Taken together, our findings establish that RRM2B suppresses invasiveness of cancer cells and that its expression is associated with a better survival prognosis for CRC patients.


Cancer Research | 2007

Ribonucleotide Reductase Small Subunit p53R2 Facilitates p21 Induction of G1 Arrest under UV Irradiation

Lijun Xue; Bingsen Zhou; Xiyong Liu; Yvonne Heung; Jennifer Chau; Emilie Chu; Shan Li; Chunglin Jiang; Frank Un; Yun Yen

p53R2, which is one of the two known ribonucleotide reductase small subunits (the other being M2), is suggested to play an important role in supplying deoxynucleotide triphosphates (dNTP) for DNA repair during the G(1) or G(2) phase of the cell cycle. The ability of p53R2 to supply dNTPs for repairing DNA damages requires the presence of a functional p53 tumor suppressor. Here, we report in vivo physical interaction and colocalization of p53R2 and p21 before DNA damage. Mammalian two-hybrid assay further indicates that the amino acids 1 to 113 of p53R2 are critical for interacting with the NH(2)-terminal region (amino acids 1-93) of p21. The binding between p21 and p53R2 decreases inside the nucleus in response to UV, the time point of which corresponds to the increased binding of p21 with cyclin-dependent kinase-2 (Cdk2), and the decreased Cdk2 activity in the nucleus at G(1). Interestingly, p53R2 dissociates from p21 but facilitates the accumulation of p21 in the nucleus in response to UV. On the other hand, the ribonucleotide reductase activity increases at the corresponding time in response to UV. These data suggest a new function of p53R2 of cooperating with p21 during DNA repair at G(1) arrest.

Collaboration


Dive into the Xiyong Liu's collaboration.

Top Co-Authors

Avatar

Yun Yen

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Bingsen Zhou

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lijun Xue

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peiguo Chu

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David K. Ann

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shuya Hu

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sofia Loera

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keqiang Zhang

City of Hope National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge