Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xizhou Qin is active.

Publication


Featured researches published by Xizhou Qin.


Physical Review Letters | 2013

Pseudo-parity-time symmetry in optical systems.

Xiaobing Luo; Jiahao Huang; Honghua Zhong; Xizhou Qin; Qiongtao Xie; Yuri S. Kivshar; Chaohong Lee

We introduce a novel concept of the pseudo-parity-time (pseudo-PT) symmetry in periodically modulated optical systems with balanced gain and loss. We demonstrate that whether or not the original system is PT symmetric, we can manipulate the property of the PT symmetry by applying a periodic modulation in such a way that the effective system derived by the high-frequency Floquet method is PT symmetric. If the original system is non-PT symmetric, the PT symmetry in the effective system will lead to quasistationary propagation that can be associated with the pseudo-PT symmetry. Our results provide a promising approach for manipulating the PT symmetry of realistic systems.


Physical Review A | 2014

Statistics-dependent quantum co-walking of two particles in one-dimensional lattices with nearest-neighbor interactions

Xizhou Qin; Yongguan Ke; Xi-Wen Guan; Zhibing Li; Natan Andrei; Chaohong Lee

We investigate continuous-time quantumwalks of two indistinguishable particles [two bosons, or two fermions, or two hard-core bosons (HCBs)] in one-dimensional lattices with nearest-neighbor interactions. The results for two HCBs are consistent with the recent experimental observation of two-magnon dynamics [Fukuhara et al., Nature (London) 502, 76 (2013)]. The two interacting particles can undergo independent walking and/or co-walking depending on both quantum statistics and interaction strength. Two strongly interacting particles may form a bound state and then co-walk like a single composite particle with a statistics-dependent walk speed. Analytical solutions for the scattering and bound states, which appear in the two-particle quantum walks, are obtained by solving the eigenvalue problem in the two-particle Hilbert space. In the context of degenerate perturbation theory, an effective single-particle model for the quantum co-walking is analytically derived and the walk speed of bosons is found to be exactly three times that of fermions and HCBs. Our result paves the way for experimentally exploring quantum statistics via two-particle quantum walks.


Scientific Reports | 2016

Quantum metrology with spin cat states under dissipation.

Jiahao Huang; Xizhou Qin; Honghua Zhong; Yongguan Ke; Chaohong Lee

Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.The maximally entangled states are excellent candidates for achieving Heisenberg-limited measurements in ideal quantum metrology, however, they are fragile against dissipation such as particle losses and their achievable precisions may become even worse than the standard quantum limit (SQL). Here we present a robust high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two spin coherent states) in the presence of particle losses. The input spin cat states are of excellent robustness against particle losses and their achievable precisions may still beat the SQL. For realistic measurements based upon our scheme, comparing with the population measurement, the parity measurement is more suitable for yielding higher precisions. In phase measurement with realistic dissipative systems of bosons, our scheme provides a robust and realizable way to achieve high-precision measurements beyond the SQL.


Laser & Photonics Reviews | 2016

Topological phase transitions and Thouless pumping of light in photonic waveguide arrays

Yongguan Ke; Xizhou Qin; Feng Mei; Honghua Zhong; Yuri S. Kivshar; Chaohong Lee

Photonic waveguide arrays provide an excellent platform for simulating conventional topological systems, and they can also be employed for the study of novel topological phases in photonics systems. However, a direct measurement of bulk topological invariants remains a great challenge. Here we study topological features of generalized commensurate Aubry-Andre-Harper (AAH) photonic waveguide arrays and construct a topological phase diagram by calculating all bulk Chern numbers, and then explore the bulk-edge correspondence by analyzing the topological edge states and their winding numbers. In contrast to incommensurate AAH models, diagonal and off-diagonal commensurate AAH models are not topologically equivalent. In particular, there appear nontrivial topological phases with large Chern numbers and topological phase transitions. By implementing Thouless pumping of light in photonic waveguide arrays, we propose a simple scheme to measure the bulk Chern numbers.


New Journal of Physics | 2018

Topological invariant and cotranslational symmetry in strongly interacting multi-magnon systems

Xizhou Qin; Feng Mei; Yongguan Ke; Li Zhang; Chaohong Lee

It is still an outstanding challenge to characterize and understand the topological features of strongly interacting states such as bound-states in interacting quantum systems. Here, by introducing a cotranslational symmetry in an interacting multi-particle quantum system, we systematically develop a method to define a Chern invariant, which is a generalization of the well-known Thouless-Kohmoto-Nightingale-den Nijs invariant, for identifying strongly interacting topological states. As an example, we study the topological multi-magnon states in a generalized Heisenberg XXZ model, which can be realized by the currently available experiment techniques of cold atoms [Phys. Rev. Lett. textbf{111}, 185301 (2013); Phys. Rev. Lett. textbf{111}, 185302 (2013)]. Through calculating the two-magnon excitation spectrum and the defined Chern number, we explore the emergence of topological edge bound-states and give their topological phase diagram. We also analytically derive an effective single-particle Hofstadter superlattice model for a better understanding of the topological bound-states. Our results not only provide a new approach to defining a topological invariant for interacting multi-particle systems, but also give insights into the characterization and understanding of strongly interacting topological states.


Physical Review A | 2015

Bloch-Landau-Zener dynamics in single-particle Wannier-Zeeman systems

Yongguan Ke; Xizhou Qin; Honghua Zhong; Jiahao Huang; Chunshan He; Chaohong Lee

Stimulated by the experimental realization of spin-dependent tunneling via gradient magnetic field [Phys. Rev. Lett. 111, 225301 (2013); Phys. Rev. Lett. 111, 185301 (2013)], we investigate dynamics of Bloch oscillations and Landau-Zener tunneling of single spin-half particles in a periodic potential under the influence of a spin-dependent constant force. In analogy to the Wannier-Stark system, we call our system as the Wannier-Zeeman system. If there is no coupling between the two spin states, the system can be described by two crossing Wannier-Stark ladders with opposite tilts. The spatial crossing between two Wannier-Stark ladders becomes a spatial anti-crossing if the two spin states are coupled by external fields. For a wave-packet away from the spatial anti-crossing, due to the spin-dependent constant force, it will undergo spatial Landau-Zener transitions assisted by the intrinsic intra-band Bloch oscillations, which we call the Bloch-Landau-Zener dynamics. If the inter-spin coupling is sufficiently strong, the system undergoes adiabatic Bloch-Landau-Zener dynamics, in which the spin dynamics follows the local dressed states. Otherwise, for non-strong inter-spin couplings, the system undergoes non-adiabatic Bloch-Landau-Zener dynamics.


Physical Review A | 2014

Photon-induced sideband transitions in a many-body Landau-Zener process

Honghua Zhong; Qiongtao Xie; Jiahao Huang; Xizhou Qin; Haiming Deng; Jun Xu; Chaohong Lee

We investigate the many-body Landau-Zener (LZ) process in a two-site Bose-Hubbard model driven by a time-periodic field. We find that the driving field may induce sideband transitions in addition to the main LZ transitions. These photon-induced sideband transitions are a signature of the photon-assisted tunneling in our many-body LZ process. In the strong interaction regime, we develop an analytical theory for understanding the sideband transitions, which is confirmed by our numerical simulation. Furthermore, we discuss the quantization of the driving field. In the effective model of the quantized driving field, the sideband transitions can be understood as the LZ transitions between states of different photon numbers.


Physical Review B | 2017

Topological magnon bound states in periodically modulated Heisenberg XXZ chains

Xizhou Qin; Feng Mei; Yongguan Ke; Li Zhang; Chaohong Lee

Strongly interacting topological states in multi-particle quantum systems pose great challenges to both theory and experiment. Recently, bound states of elementary spin waves (magnons) in quantum magnets have been experimentally observed in quantum Heisenberg chains comprising ultracold Bose atoms in optical lattices. Here, we explore a strongly interacting topological state called topological magnon bound-state in the quantum Heisenberg chain under cotranslational symmetry. We find that the cotranslational symmetry is the key to the definition of a topological invariant for multi-particle quantum states, which enables us to characterize the topological features of multi-magnon excitations. We calculate energy spectra, density distributions, correlations and Chern numbers of the two-magnon bound-states and show the existence of topological protected edge bound-states. Our study not only opens a new prospect to pursue topological magnon bound-states, but also gives insights into the characterization and understanding of strongly interacting topological states.


Physical Review A | 2017

Multiparticle Wannier states and Thouless pumping of interacting bosons

Yongguan Ke; Xizhou Qin; Yuri S. Kivshar; Chaohong Lee

The study of topological effects in physics is a hot area of research, and only recently have researchers been able to address the important issues of topological properties of interacting quantum systems. But it is still a great challenge to describe multiparticle and interaction effects. Here, we introduce the multiparticle Wannier states for interacting systems with cotranslational symmetry, which provide an orthogonal basis for constructing effective Hamiltonians for the isolated bands. We reveal how the shift of multiparticle Wannier state relates to the Chern number of the multiparticle Bloch band and study the Thouless pumping of two interacting bosons in a one-dimensional superlattice. In addition to the Thouless pumping of bound states when two bosons move unidirectionally as a whole, we describe topologically resonant tunneling when two bosons move unidirectionally, one by the other, provided the neighboring-well potential bias matches the interaction energy. Our work creates a paradigm for multiparticle topological effects and provides a way to detect topological states in interacting multiparticle systems.


Physical Review A | 2016

Asymmetric sequential Landau-Zener dynamics of Bose-condensed atoms in a cavity

Jiahao Huang; Pu Gong; Xizhou Qin; Honghua Zhong; Chaohong Lee

We explore the asymmetric sequential Landau-Zener (LZ) dynamics in an ensemble of interacting Bose condensed two-level atoms coupled with a cavity field. Assuming the couplings between all atoms and the cavity field are identical, the interplay between atom-atom interaction and detuning may lead to a series of LZ transitions. Unlike the conventional sequential LZ transitions, which are symmetric to the zero detuning, the LZ transitions of Bose condensed atoms in a cavity field are asymmetric and sensitively depend on the photon number distribution of the cavity. In LZ processes involving single excitation numbers, both the variance of the relative atom number and the step slope of the sequential population ladder are asymmetric, and the asymmetry become more significant for smaller excitation numbers. Furthermore, in LZ processes involving multiple excitation numbers, there may appear asymmetric population ladders with decreasing step heights. During a dynamical LZ process, due to the atom-cavity coupling, the cavity field shows dynamical collapse and revivals. In comparison with the symmetric LZ transitions in a classical field, the asymmetric LZ transitions in a cavity field originate from the photon-number-dependent Rabi frequency. The asymmetric sequential LZ dynamics of Bose condensed atoms in a cavity field may open up a new way to explore the fundamental many-body physics in coupled atom-photon systems.

Collaboration


Dive into the Xizhou Qin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongguan Ke

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Mei

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yuri S. Kivshar

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Jun Xu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Li Zhang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Shuyuan Wu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Bo Zhu

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge