Xu G. Yu
Ragon Institute of MGH, MIT and Harvard
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xu G. Yu.
Journal of Virology | 2003
M. M. Addo; Xu G. Yu; Almas Rathod; Daniel E. Cohen; Robert L. Eldridge; Daryld Strick; Mary N. Johnston; Colleen Corcoran; Alysse Wurcel; Cecily A. Fitzpatrick; Margaret E. Feeney; William Rodriguez; Nesli Basgoz; Rika Draenert; David Stone; Christian Brander; Philip J. R. Goulder; Eric S. Rosenberg; Marcus Altfeld; Bruce D. Walker
ABSTRACT Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/106 PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.
Journal of Experimental Medicine | 2004
Mathias Lichterfeld; Daniel E. Kaufmann; Xu G. Yu; Stanley K. Mui; Marylyn M. Addo; Mary N. Johnston; Daniel E. Cohen; Gregory K. Robbins; Eunice Pae; Galit Alter; Alysse Wurcel; David Stone; Eric S. Rosenberg; Bruce D. Walker; Marcus Altfeld
Virus-specific CD8+ T cells are associated with declining viremia in acute human immunodeficiency virus (HIV)1 infection, but do not correlate with control of viremia in chronic infection, suggesting a progressive functional defect not measured by interferon γ assays presently used. Here, we demonstrate that HIV-1–specific CD8+ T cells proliferate rapidly upon encounter with cognate antigen in acute infection, but lose this capacity with ongoing viral replication. This functional defect can be induced in vitro by depletion of CD4+ T cells or addition of interleukin 2–neutralizing antibodies, and can be corrected in chronic infection in vitro by addition of autologous CD4+ T cells isolated during acute infection and in vivo by vaccine-mediated induction of HIV-1–specific CD4+ T helper cell responses. These data demonstrate a loss of HIV-1–specific CD8+ T cell function that not only correlates with progressive infection, but also can be restored in chronic infection by augmentation of HIV-1–specific T helper cell function. This identification of a reversible defect in cell-mediated immunity in chronic HIV-1 infection has important implications for immunotherapeutic interventions.
PLOS Medicine | 2006
Marcus Altfeld; Elizabeth T. Kalife; Ying Qi; Hendrik Streeck; Mathias Lichterfeld; Mary N. Johnston; Nicole C. Burgett; Martha E Swartz; Amy Yang; Galit Alter; Xu G. Yu; Angela Meier; J. Rockstroh; Todd M. Allen; Heiko Jessen; Eric S. Rosenberg; Mary Carrington; Bruce D. Walker
Background Very little is known about the immunodominance patterns of HIV-1-specific T cell responses during primary HIV-1 infection and the reasons for human lymphocyte antigen (HLA) modulation of disease progression. Methods and Findings In a cohort of 104 individuals with primary HIV-1 infection, we demonstrate that a subset of CD8+ T cell epitopes within HIV-1 are consistently targeted early after infection, while other epitopes subsequently targeted through the same HLA class I alleles are rarely recognized. Certain HLA alleles consistently contributed more than others to the total virus-specific CD8+ T cell response during primary infection, and also reduced the absolute magnitude of responses restricted by other alleles if coexpressed in the same individual, consistent with immunodomination. Furthermore, individual HLA class I alleles that have been associated with slower HIV-1 disease progression contributed strongly to the total HIV-1-specific CD8+ T cell response during primary infection. Conclusions These data demonstrate consistent immunodominance patterns of HIV-1-specific CD8+ T cell responses during primary infection and provide a mechanistic explanation for the protective effect of specific HLA class I alleles on HIV-1 disease progression.
Journal of Virology | 2004
Todd M. Allen; Marcus Altfeld; Xu G. Yu; Kristin M. O'Sullivan; Mathias Lichterfeld; Sylvie Le Gall; M. John; Bianca R. Mothé; Paul K. Lee; Elizabeth T. Kalife; Daniel E. Cohen; Kenneth A. Freedberg; Daryld Strick; Mary N. Johnston; Alessandro Sette; Eric S. Rosenberg; S. Mallal; Philip J. R. Goulder; Christian Brander; Bruce D. Walker
ABSTRACT Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8+ T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes.
Nature Medicine | 2014
Maria J. Buzon; Hong Sun; Chun Li; Amy Shaw; Katherine Seiss; Zhengyu Ouyang; Enrique Martin-Gayo; Jin Leng; Timothy J. Henrich; Jonathan Z. Li; Florencia Pereyra; Ryan Zurakowski; Bruce D. Walker; Eric S. Rosenberg; Xu G. Yu; Mathias Lichterfeld
Cellular HIV-1 reservoirs that persist despite antiretroviral treatment are incompletely defined. We show that during suppressive antiretroviral therapy, CD4+ T memory stem cells (TSCM cells) harbor high per-cell levels of HIV-1 DNA and make increasing contributions to the total viral CD4+ T cell reservoir over time. Moreover, we conducted phylogenetic studies that suggested long-term persistence of viral quasispecies in CD4+ TSCM cells. Thus, HIV-1 may exploit the stem cell characteristics of cellular immune memory to promote long-term viral persistence.
Journal of Virology | 2003
Marcus Altfeld; Marylyn M. Addo; Raj Shankarappa; Paul K. Lee; Todd M. Allen; Xu G. Yu; Almas Rathod; Jason Harlow; Kristin M. O'Sullivan; Mary N. Johnston; Philip J. R. Goulder; James I. Mullins; Eric S. Rosenberg; Christian Brander; Bette T. Korber; Bruce D. Walker
ABSTRACT The antigenic diversity of human immunodeficiency virus type 1 (HIV-1) represents a significant challenge for vaccine design as well as the comprehensive assessment of HIV-1-specific immune responses in infected persons. In this study we assessed the impact of antigen variability on the characterization of HIV-1-specific T-cell responses by using an HIV-1 database to determine the sequence variability at each position in all expressed HIV-1 proteins and a comprehensive data set of CD8 T-cell responses to a reference strain of HIV-1 in infected persons. Gamma interferon Elispot analysis of HIV-1 clade B-specific T-cell responses to 504 overlapping peptides spanning the entire expressed HIV-1 genome derived from 57 infected subjects demonstrated that the average amino acid variability within a peptide (entropy) was inversely correlated to the measured frequency at which the peptide was recognized (P = 6 × 10−7). Subsequent studies in six persons to assess T-cell responses against p24 Gag, Tat, and Vpr peptides based on autologous virus sequences demonstrated that 29% (12 of 42) of targeted peptides were only detected with peptides representing the autologous virus strain compared to the HIV-1 clade B consensus sequence. The use of autologous peptides also allowed the detection of significantly stronger HIV-1-specific T-cell responses in the more variable regulatory and accessory HIV-1 proteins Tat and Vpr (P = 0.007). Taken together, these data indicate that accurate assessment of T-cell responses directed against the more variable regulatory and accessory HIV-1 proteins requires reagents based on autologous virus sequences. They also demonstrate that CD8 T-cell responses to the variable HIV-1 proteins are more common than previously reported.
Journal of Virology | 2002
Xu G. Yu; Marylyn M. Addo; Eric S. Rosenberg; William Rodriguez; Paul K. Lee; Cecily A. Fitzpatrick; Mary N. Johnston; Daryld Strick; Philip J. R. Goulder; Bruce D. Walker; Marcus Altfeld
ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.
Journal of Virology | 2008
Arne Schneidewind; Mark A. Brockman; John Sidney; Yaoyu E. Wang; Huabiao Chen; Todd J. Suscovich; Bin Li; Rahma I. Adam; Rachel L. Allgaier; Bianca R. Mothé; Thomas Kuntzen; Cesar Oniangue-Ndza; Alicja Trocha; Xu G. Yu; Christian Brander; Alessandro Sette; Bruce D. Walker; Todd M. Allen
ABSTRACT Control of human immunodeficiency virus type 1 (HIV-1) by HLA-B27-positive subjects has been linked to an immunodominant CD8+ cytotoxic T-lymphocyte (CTL) response targeting the conserved KK10 epitope (KRWIILGLNK263-272) in p24/Gag. Viral escape in KK10 typically occurs through development of an R264K substitution in conjunction with the upstream compensatory mutation S173A, and the difficulty of the virus to escape from the immune response against the KK10 epitope until late in infection has been associated with slower clinical progression. Rare alternative escape mutations at R264 have been observed, but factors dictating the preferential selection of R264K remain unclear. Here we illustrate that while all observed R264 mutations (K, G, Q, and T) reduced peptide binding to HLA-B27 and impaired viral replication, the replicative defects of the alternative mutants were actually less pronounced than those for R264K. Importantly, however, none of these mutants replicated as well as an R264K variant containing the compensatory mutation S173A. In assessing the combined effects of viral replication and CTL escape using an in vitro coculture assay, we further observed that the compensated R264K mutant also displayed the highest replication capacity in the presence of KK10-specific CTLs. Comparisons of codon usage for the respective variants indicated that generation of the R264K mutation may also be favored due to a G-to-A bias in nucleotide substitutions during HIV-1 replication. Together, these data suggest that the preference for R264K is due primarily to the ability of the S173A-compensated virus to replicate better than alternative variants in the presence of CTLs, suggesting that viral fitness is a key contributor for the selection of immune escape variants.
Journal of Virology | 2005
Todd M. Allen; Xu G. Yu; Elizabeth T. Kalife; Laura L. Reyor; Mathias Lichterfeld; M. John; Michael Cheng; Rachel L. Allgaier; Stanley K. Mui; Nicole Frahm; Galit Alter; Nancy V. Brown; Mary N. Johnston; Eric S. Rosenberg; S. Mallal; Christian Brander; Bruce D. Walker; Marcus Altfeld
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) evades CD8+ T-cell responses through mutations within targeted epitopes, but little is known regarding its ability to generate de novo CD8+ T-cell responses to such mutants. Here we examined gamma interferon-positive, HIV-1-specific CD8+ T-cell responses and autologous viral sequences in an HIV-1-infected individual for more than 6 years following acute infection. Fourteen optimal HIV-1 T-cell epitopes were targeted by CD8+ T cells, four of which underwent mutation associated with dramatic loss of the original CD8+ response. However, following the G357S escape in the HLA-A11-restricted Gag349-359 epitope and the decline of wild-type-specific CD8+ T-cell responses, a novel CD8+ T-cell response equal in magnitude to the original response was generated against the variant epitope. CD8+ T cells targeting the variant epitope did not exhibit cross-reactivity against the wild-type epitope but rather utilized a distinct T-cell receptor Vβ repertoire. Additional studies of chronically HIV-1-infected individuals expressing HLA-A11 demonstrated that the majority of the subjects targeted the G357S escape variant of the Gag349-359 epitope, while the wild-type consensus sequence was significantly less frequently recognized. These data demonstrate that de novo responses against escape variants of CD8+ T-cell epitopes can be generated in chronic HIV-1 infection and provide the rationale for developing vaccines to induce CD8+ T-cell responses directed against both the wild-type and variant forms of CD8 epitopes to prevent the emergence of cytotoxic T-lymphocyte escape variants.
Journal of Clinical Investigation | 2011
Huabiao Chen; Chun Li; Jinghe Huang; Thai Duong Hong Cung; Katherine Seiss; Jill Beamon; Mary Carrington; Lindsay C. Porter; Patrick S. Burke; Yue Yang; Bethany J. Ryan; Ruiwu Liu; Robert H. Weiss; Florencia Pereyra; William Douglas Cress Jr.; Abraham L. Brass; Eric S. Rosenberg; Bruce D. Walker; Xu G. Yu; Mathias Lichterfeld
Elite controllers represent a unique group of HIV-1-infected persons with undetectable HIV-1 replication in the absence of antiretroviral therapy. However, the mechanisms contributing to effective viral immune defense in these patients remain unclear. Here, we show that compared with HIV-1 progressors and HIV-1-negative persons, CD4+ T cells from elite controllers are less susceptible to HIV-1 infection. This partial resistance to HIV-1 infection involved less effective reverse transcription and mRNA transcription from proviral DNA and was associated with strong and selective upregulation of the cyclin-dependent kinase inhibitor p21 (also known as cip-1 and waf-1). Experimental blockade of p21 in CD4+ T cells from elite controllers resulted in a marked increase of viral reverse transcripts and mRNA production and led to higher enzymatic activities of cyclin-dependent kinase 9 (CDK9), which serves as a transcriptional coactivator of HIV-1 gene expression. This suggests that p21 acts as a barrier against HIV-1 infection in CD4+ T cells from elite controllers by inhibiting a cyclin-dependent kinase required for effective HIV-1 replication. These data demonstrate a mechanism of host resistance to HIV-1 in elite controllers and may open novel perspectives for clinical strategies to prevent or treat HIV-1 infection.