Xu-jun Qin
Fourth Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xu-jun Qin.
Molecular and Cellular Endocrinology | 2013
Xin Wang; Rui Liu; Wei Zhang; Xiaodi Zhang; Nai Liao; Zhao Wang; Wenli Li; Xu-jun Qin; Chunxu Hai
Insulin resistance is the hallmark of type 2 diabetes mellitus (T2DM), which is closely related to disorder of lipid metabolism. The study was designed to evaluate the effects of oleanolic acid (OA) on hepatic insulin resistance and underlying mechanisms in Lep(db)(/)(db) obese diabetic mice. db/db Mice were administered with OA (20mg/kg/day, i.p.) for two weeks. OA reduced body weight, liver weight, and fat weight, and protected liver morphology and function. OA decreased fasting blood glucose, improved glucose and insulin tolerance, enhanced insulin signaling and inhibited gluconeogenesis. In livers, mitochondrial biogenesis, ultrastructure and function were influenced, accompanied by increased cellular and mitochondrial ROS production. OA inhibited all these changes, in which process Nrf2-GCLc mediated stabilization of mitochondrial glutathione pool may be involved. Moreover, OA decreased serum triglyceride, total cholesterol, LDL, HDL, and free fatty acids, increased serum HDL, and reduced hepatic lipid accumulation. Furthermore, inflammatory condition in db/db mice was improved by OA, as evidenced by decreased level of IL-1 β, IL-6, and TNFα in circulation and in liver. The evidence suggests that OA improves hepatic insulin resistance through inhibition of mitochondrial ROS, hypolipidemic and anti-inflammatory effects. The effectiveness of OA leads to interesting therapeutic perspectives.
Toxicology Letters | 2014
Ying-Na Li; Miaomiao Xi; Yu Guo; Chunxu Hai; Wei-Lin Yang; Xu-jun Qin
Arsenic exposure has been shown to induce hypoxia inducible factor 1α (HIF-1α) accumulation, however the underlying mechanism remains unknown. In the present study, we tested the hypothesis that arsenic exposure triggered the interaction between NADPH oxidase and mitochondria to promote reactive oxygen species (ROS) production, which inactivate prolyl hydroxylases (PHDs) activity, leading to the stabilization of HIF-1α protein. Exposure of human immortalized liver cell line HL-7702 cells to arsenite induced HIF-1α accumulation in a dose-dependent manner, which was abolished by SOD mimetic MnTMPyP. Inhibition of NADPH oxidase with diphenyleneiodonium chloride (DPI) or inhibition of mitochondrial respiratory chain with rotenone significantly blocked arsenite-induced ROS production, and the mitochondria appeared to be the major source of ROS production. Arsenite treatment inhibited HIF-1α hydroxylation by prolyl hydroxylases (PHDs) and increased HIF-1α stabilization, but did not affect HIF-1α mRNA expression and Akt activation. Supplementation of ascorbate or Fe(II) completely abolished arsenite-induced PHDs inhibition and HIF-1α stabilization. In conclusion, these results define a unique mechanism of HIF-1α accumulation following arsenic exposure, that is, arsenic activates NADPH oxidase-mitochondria axis to produce ROS, which deplete intracellular ascorbate and Fe(II) to inactivate PHDs, leading to HIF-1α stabilization.
Oxidative Medicine and Cellular Longevity | 2014
Ying-Na Li; Yu Guo; Miaomiao Xi; Pei Yang; Xue-Ying Zhou; Shuang Yin; Chunxu Hai; Jin-Gang Li; Xu-jun Qin
Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β-galactosidase (SAβ-gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats.
Experimental and Toxicologic Pathology | 2013
Peng Wang; Xiao-long Ye; Rui Liu; Hongli Chen; Xin Liang; Wenli Li; Xiaodi Zhang; Xu-jun Qin; Hua Bai; Wei Zhang; Xin Wang; Chunxu Hai
The mechanism of phosgene-induced acute lung injury (ALI) remains unclear and it is still lack of effective treatments. Previous study indicated that oxidative stress was involved in phosgene-induced ALI. Caffeic acid phenethyl ester (CAPE) has been proved to be an anti-inflammatory agent and a potent free radical scavenger. The purpose of this study was to investigate the protective effects of CAPE on phosgene-induced ALI and identify the mechanism, in which oxidative stress and inflammation were involved. The phosgene was used to induce ALI in rats. The results showed that after phosgene exposure, total protein content in BALF was not significantly changed. The increase of MDA level and SOD activity induced by phosgene was significantly reduced by CAPE administration, and the decrease of GSH level in BALF and lung were significantly reversed by CAPE. CAPE also partially blocked the translocation of NF-κB p65 to the nucleus, but it had little effect on the phosphorylation of p38 MAPK. In conclusion, CAPE showed protective effects on lung against phosgene-induced ALI, which may be related with a combination of the antioxidant and anti-inflammatory functions of CAPE.
Inhalation Toxicology | 2009
Hongli Chen; Chunxu Hai; Xin Liang; Xiaodi Zhang; Riu Liu; Xu-jun Qin
Secreted phospholipase A2 of group IIA (sPLA2-IIA) has been involved in a variety of inflammatory diseases, including acute lung injury. However, the specific role of sPLA2-IIA in phosgene-induced acute lung injury remains unidentified. The aim of the present study was to investigate the correlation between sPLA2-IIA activity and the severity of phosgene-induced acute lung injury. Adult male rats were randomly exposed to either normal room air (control group) or a concentration of 400 ppm phosgene (phosgene-exposed group) for there are 5 phosgene-exposed groups altogether. For the time points of 1, 3, 6, 12 and 24 h post-exposure, one phosgene-exposed group was sacrificed at each time point. The severity of acute lung injury was assessed by PaO2/FIO2 ratio, wet-to-dry lung-weight ratio, and bronchoalveolar lavage (BAL) fluid protein concentration. sPLA2-IIA activity in BAL fluid markedly increased between 1 h and 12 h after phosgene exposure, and reached its highest level at 6 h. Moreover, the trend of this elevation correlated well with the severity of lung injury. These results indicate that sPLA2-IIA probably participates in phosgene-induced acute lung injury.
Inhalation Toxicology | 2006
Wenli Li; Chunxu Hai; Xin Liang; Xiaodi Zhang; Hongli Chen; Xu-jun Qin; Riu Liu; Wei He; Peng Wang; Bo Li
Phosgene inhalation can induced pulmonary edema formation. The purpose of this study was to investigate cell of apoptosis in pulmonary edema mice induced by phosgene. Fifty-two BALB/c mice were random divided into a negative group and a positive group with 26 mice in each. Mice were exposed for 5 min to air and phosgene in the negative group and in the positive one, respectively. The dose of phosgene was 539 ppm. After 4 h of exposure, all mice were anesthetized. Lungs were analyzed for lung wet/dry weight ratio and pathological alternation. The method of isolation and culture of alveolar type II cells (ATII cells) was established to observe their apoptosis by electron microscope and flow cytometry. Apoptosis of lung cells was observed by DNA gel electrophoresis and TUNEL. The lung wet/dry weight ratio was significantly higher in the positive group (6.42 ± 1.00) than in the negative group (4.25 ± 0.47, p < 0.05). A large amount of fluid effusion was observed in the alveolus of mice induced by phosgene. Alveolar type II cells were identified by tannic acid stainning and electron microscope. The apoptotic signs in alveolar type II cells, alveolar type I cells, eosinophils, macrophages, symphocytes, and ciliated cells were viewed under electron microscope in positive group. The ratio of apoptosis cells (40.26 ± 7.74) in positive was higher than that (1.58 ± 1.01, p < 0.001) in the negative group by flow cytometry. DNA ladder alternation was seen through DNA gel electrophoresis. Apoptosis of epithelia and vascular endothelia in lung were found by TUNEL. These results indicate that there is success in establishing a model of pulmonary edema and method of isolation and culture of AT II cells in BALB/c mice. Phosgene can induce apoptosis of cells in the lungs of BALB/c mice, and this indicates that pulmonary edema is related to apoptosis of lung cells in mice, induced by phosgene.
Inhalation Toxicology | 2010
Xiaodi Zhang; Jun-feng Hou; Xu-jun Qin; Wenli Li; Hongli Chen; Rui Liu; Xin Liang; Chunxu Hai
Phosgene inhalation results in acute lung injury (ALI) mostly, pulmonary edema and even acute respiratory distress syndrome, but there is no specific antidote. Inflammatory cells play an important role in the ALI caused by phosgene. Intercellular adhesion molecule-1 (ICAM-1) is a critical factor for inflammatory organ injury. We hypothesized that pentoxifylline (PTX), an inhibitor of leukocyte activation, would have a protective effect on experimental phosgene-induced lung injury rats by inhibiting ICAM-1. To prove this hypothesis, we used rat models of phosgene (400 ppm × 1 min)-induced injury to investigate: (1) the time course of lung injury (control 1, 3, 6, 12, 24, and 48 h group), including pathological changes in hematoxylin and eosin staining and transmission electron microscope, myeloperoxidase (MPO) activity by colorimetric method and ICAM-1 protein level detected by western blot, (2) At 3 h after phosgene exposure, protective effects of different dosages of PTX (50 mg/kg and 100 mg/kg) administration were evaluated by MPO activity, ICAM-1 differential expression and WBC count in bronchoalveolar lavage fluid. The results showed that inflammatory cells emerged out of lung blood vessels at 3 h after phosgene exposure. The MPO activity of lung tissue increased significantly from 3 to 48 h after phosgene exposure (P < 0.05) and ICAM-1 expression presented a similar change, especially at 3 h and 24 h (P < 0.05). After pretreatment and treatment with PTX (100 mg/kg), significant protective effects were shown (P < 0.05). These data supported our hypothesis that PTX reduced phosgene-induced lung injury, possibly by inhibiting ICAM-1 differential expression.
Toxicology Letters | 2013
Rui Liu; Hongli Chen; Hua Bai; Wei Zhang; Xin Wang; Xu-jun Qin; Xiaodi Zhang; Wenli Li; Xin Liang; Chunxu Hai
Pulmonary fibrosis is a serious and irreversible lung injury with obscure etiologic mechanisms and no effective treatment to date. This study explored a crucial link between oxidative stress and pulmonary fibrogenesis, focusing on nuclear factor erythroid 2-related factor 2 (Nrf2), a core transcription factor in antioxidative regulation systems. Treatment of C57 BL/6 mice with bleomycin increased fibroblast viability and collagen production and significantly downregulated Nrf2. In addition, prominent oxidative stress was indicated by changes in superoxide dismutase, catalase activity, and glutathione and thiobarbituric acid-reactive substance levels. In a cell-based model, bleomycin suppressed Nrf2 activation via extracellular signal-related kinase phosphorylation, enhancing intracellular reactive oxygen species in lung fibroblasts and stimulating abnormal cell proliferation and collagen secretion. To confirm this novel mechanism of bleomycin-induced fibrogenesis, we attempted to upregulate Nrf2 and related antioxidant proteins in bleomycin-treated fibroblasts using a putative Nrf2 activator, caffeic acid phenethyl ester, and the results showed that bleomycin-induced fibroblast proliferation and collagen content were attenuated through improved redox balance. Collectively, these results disclose a potential regulatory mechanism in pulmonary fibrosis that will aid the development of new therapies.
Journal of Applied Toxicology | 2013
Hongli Chen; Hua Bai; Miaomiao Xi; Riu Liu; Xu-jun Qin; Xin Liang; Wei Zhang; Xiaodi Zhang; Wenli Li; Chunxu Hai
Phosgene is a poorly water‐soluble gas penetrating the lower respiratory tract which can induce acute lung injury characterized by a latent phase of fatal pulmonary edema. Pulmonary edema caused by phosgene is believed to be a consequence of oxidative stress and inflammatory responses. Ethyl pyruvate (EP) has been demonstrated to have anti‐inflammatory and anti‐oxidative properties in vivo and in vitro. The potential therapeutic role of EP in phosgene‐induced pulmonary edema has not been addressed so far. In the present study, we aim to investigate the protective effects of EP on phosgene‐induced pulmonary edema and the underlying mechanisms. Rats were administered with EP (40 mg kg−1) and RAW264.7 cells were also incubated with it (0, 2, 5 or 10 µm) immediately after phosgene (400 ppm, 1 min) or air exposure. Wet‐to‐dry lung weight ratio (W:D ratio), nitric oxide (NO) and prostaglandin E2 (PGE2) production, cyclooxygenase2 (COX‐2) and inducible nitric oxide synthase (iNOS) expression, and mitogen‐activated protein kinases activities (MAPKs) were measured. Our results showed that EP treatment attenuated phosgene‐induced pulmonary edema and decreased the level of NO and PGE2 dose‐dependently. Furthermore, EP significantly reduced COX‐2 expression, iNOS expression and MAPK activation induced by phosgene. Moreover, specific inhibitors of MAPKs reduced COX‐2 and iNOS expression induced by phosgene. These findings suggested that EP has a protective role against phosgene‐induced pulmonary edema, which is mediated in part by inhibiting MAPK activation and subsequently down‐regulating COX‐2 and iNOS expression as well as decreasing the production of NO and PGE2. Copyright
Inhalation Toxicology | 2008
Xiaodi Zhang; Chunxu Hai; Feng-lei Cai; Xin Liang; Rui Liu; Hongli Chen; Xu-jun Qin; An-ji Feng
Acute lung injury (ALI) induced by phosgene increases risk of serious edema and mortality. Increased permeability of the microvascular endothelium is implicated in the progression of ALI, but the processing interaction and time course activity of the vascular regulators in exudation are still not understood. The main aim of this study was to investigate the time course and potential role for vascular endothelial growth factor (VEGF), its receptors, and some vascular function regulators related to increased vascular permeability of lung induced by phosgene. Sprague Dawley rats were randomly divided into seven groups according to time post phosgene exposure (control, and 1, 3, 6, 12, 24, and 48 h groups). Lung tissue was removed to evaluate VEGF isoforms, fms-like tyrosine kinase receptor 1 (Flt-1), and kinase insert domain containing region (KDR/Flk-1) by reverse-transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Blood samples were collected for measurement of plasma endothelin-1 (ET-1) and nitric oxide (NO) level. The results showed that the mRNA and protein expression profile of the VEGF system after phosgene exposure was time dependent. The VEGF system expression in lung tissue was related closely to the level of ET-1 and NO. In conclusion, increased permeability of the lung microvascular endothelium induced by phosgene was primarily a result of differential expression of VEGF and its receptors, and was related to the level of ET-1 and NO. The results suggest that the cooperation of VEGF system, ET-1, and NO plays a critical role, and all those parameters emerge as time dependent in the early phase of the permeability process induced by phosgene exposure.