Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xu Zhou is active.

Publication


Featured researches published by Xu Zhou.


Journal of the American Chemical Society | 2015

Strong Second-Harmonic Generation in Atomic Layered GaSe.

Xu Zhou; Jingxin Cheng; Yubing Zhou; Ting Cao; Hao Hong; Zhi-Min Liao; Shiwei Wu; Hailin Peng; Kaihui Liu; Dapeng Yu

Nonlinear effects in two-dimensional (2D) atomic layered materials have recently attracted increasing interest. Phenomena such as nonlinear optical edge response, chiral electroluminescence, and valley and spin currents beyond linear orders have opened up a great opportunity to expand the functionalities and potential applications of 2D materials. Here we report the first observation of strong optical second-harmonic generation (SHG) in monolayer GaSe under nonresonant excitation and emission condition. Our experiments show that the nonresonant SHG intensity of GaSe is the strongest among all the 2D atomic crystals measured up to day. At the excitation wavelength of 1600 nm, the SHG signal from monolayer GaSe is around 1-2 orders of magnitude larger than that from monolayer MoS2 under the same excitation power. Such a strong nonlinear signal facilitates the use of polarization-dependent SHG intensity and SHG mapping to investigate the symmetry properties of this material: the monolayer GaSe shows 3-fold lattice symmetry with an intrinsic correspondence to its geometric triangular shape in our growth condition; whereas the bilayer GaSe exhibits two dominant stacking orders: AA and AB stacking. The correlation between the stacking orders and the interlayer twist angles in GaSe bilayer indicates that different triangular GaSe atomic layers have the same dominant edge configuration. Our results provide a route toward exploring the structural information and the possibility to observe other nonlinear effects in GaSe atomic layers.


Nature Communications | 2015

Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

Zhenpeng Su; Hui Zhu; Fuliang Xiao; Q.-G. Zong; Xu Zhou; Huinan Zheng; Yuming Wang; Shui Wang; Yang Hao; Zhonglei Gao; Zhaoguo He; D. N. Baker; Harlan E. Spence; G. D. Reeves; J. B. Blake; J. R. Wygant

Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10u2009h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.


Light-Science & Applications | 2017

Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications

Yicheng Zhao; Wenke Zhou; Xu Zhou; Kaihui Liu; Dapeng Yu; Qing Zhao

Ionic transport in organometal halide perovskites is of vital importance because it dominates anomalous phenomena in perovskite solar cells, from hysteresis to switchable photovoltaic effects. However, excited state ionic transport under illumination has remained elusive, although it is essential for understanding the unusual light-induced effects (light-induced self-poling, photo-induced halide segregation and slow photoconductivity response) in organometal halide perovskites for optoelectronic applications. Here, we quantitatively demonstrate light-enhanced ionic transport in CH3NH3PbI3 over a wide temperature range of 17–295u2009K, which reveals a reduction in ionic transport activation energy by approximately a factor of five (from 0.82 to 0.15u2009eV) under illumination. The pure ionic conductance is obtained by separating it from the electronic contribution in cryogenic galvanostatic and voltage-current measurements. On the basis of these findings, we design a novel light-assisted method of catalyzing ionic interdiffusion between CH3NH3I and PbI2 stacking layers in sequential deposition perovskite synthesis. X-ray diffraction patterns indicate a significant reduction of PbI2 residue in the optimized CH3NH3PbI3 thin film produced via light-assisted sequential deposition, and the resulting solar cell efficiency is increased by over 100% (7.5%–15.7%) with little PbI2 residue. This new method enables fine control of the reaction depth in perovskite synthesis and, in turn, supports light-enhanced ionic transport.


Journal of Physical Chemistry Letters | 2017

Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells

Wenke Zhou; Yicheng Zhao; Xu Zhou; Rui Fu; Qi Li; Yao Zhao; Kaihui Liu; Dapeng Yu; Qing Zhao

Due to light-induced effects in CH3NH3-based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH3NH3-based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH3NH3PbI3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH3NH3PbI3 is 0.62 eV under dark conditions, larger than that of CsPbI2Br (0.45 eV); however, it reduces to 0.07 eV for CH3NH3PbI3 under illumination, smaller than that for CsPbI2Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH3NH3PbI3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.


Advanced Science | 2017

Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

Jin Zhang; Hao Hong; Chao Lian; Wei Ma; Xiaozhi Xu; Xu Zhou; H.M. Fu; Kaihui Liu; Sheng Meng

Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting.


Advanced Materials | 2017

Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency

Chi Li; Xu Zhou; Feng Zhai; Zhenjun Li; Fengrui Yao; Ruixi Qiao; Ke Chen; Matthew T. Cole; Dapeng Yu; Zhipei Sun; Kaihui Liu; Qing Dai

Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution.


Nature Communications | 2017

Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly

Jinghui Wang; Hongde Yu; Xu Zhou; Xiaozhi Liu; Renjie Zhang; Zhixing Lu; Jingying Zheng; Lin Gu; Kaihui Liu; Dong Wang; Liying Jiao

Probing the crystallographic orientation of two-dimensional (2D) materials is essential to understand and engineer their properties. However, the nondestructive identification of the lattice orientations of various 2D materials remains a challenge due to their very thin nature. Here, we identify the crystallographic structures of various 2D atomic crystals using molecules as probes by utilizing orientation-dependent molecule–substrate interactions. We discover that the periodic atomic packing of 2D materials guides oleamide molecules to assemble into quasi-one-dimensional nanoribbons with specific alignments which precisely indicate the lattice orientations of the underlying materials. Using oleamide molecules as probes, we successfully identify the crystallographic orientations of ~12 different 2D materials without degrading their intrinsic properties. Our findings allow for the nondestructive identification of the lattice structure of various 2D atomic crystals and shed light on the functionalization of these 2D materials with supramolecular assembly.Identifying the crystallographic orientations of 2D materials is important, but methods to do so are typically destructive. Here, the authors show that the orientational dependency of self-assembled nanoribbons of oleamide molecules can be used to non-invasively probe the lattice orientations of various 2D substrates.


Nano Letters | 2017

Monitoring Local Strain Vector in Atomic-Layered MoSe2 by Second-Harmonic Generation

Jing Liang; Jin Zhang; Zhenzhu Li; Hao Hong; Jinhuan Wang; Zhihong Zhang; Xu Zhou; Ruixi Qiao; Jiyu Xu; Peng Gao; Zhirong Liu; Zhongfan Liu; Zhipei Sun; Sheng Meng; Kaihui Liu; Dapeng Yu

Strain serves as a powerful freedom to effectively, reversibly, and continuously engineer the physical and chemical properties of two-dimensional (2D) materials, such as bandgap, phase diagram, and reaction activity. Although there is a high demand for full characterization of the strain vector at local points, it is still very challenging to measure the local strain amplitude and its direction. Here, we report a novel approach to monitor the local strain vector in 2D molybdenum diselenide (MoSe2) by polarization-dependent optical second-harmonic generation (SHG). The strain amplitude can be evaluated from the SHG intensity in a sensitive way (-49% relative change per 1% strain); while the strain direction can be directly indicated by the evolution of polarization-dependent SHG pattern. In addition, we employ this technique to investigate the interlayer locking effect in 2H MoSe2 bilayers when the bottom layer is under stretching but the top layer is free. Our observation, combined with ab initio calculations, demonstrates that the noncovalent interlayer interaction in 2H MoSe2 bilayers is strong enough to transfer the strain of at least 1.4% between the bottom and top layers to prevent interlayer sliding. Our results establish that SHG is an effective approach for in situ, sensitive, and noninvasive measurement of local strain vector in noncentrosymmetric 2D materials.


ACS Nano | 2015

Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons

Yuan Yan; Xu Zhou; Han Jin; Cai-Zhen Li; Xiaoxing Ke; Gustaaf Van Tendeloo; Kaihui Liu; Dapeng Yu; Martin Dressel; Zhi-Min Liao

Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg(2) and out-of-plane A1g(1) modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg(2) phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm(–1)/%, which is twice of that in Bi2Se3 bulk material (0.52 cm(–1)/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.


Advanced Materials | 2017

Chemical Intercalation of Topological Insulator Grid Nanostructures for High-Performance Transparent Electrodes

Yunfan Guo; Jinyuan Zhou; Yujing Liu; Xu Zhou; Fengrui Yao; Congwei Tan; Jinxiong Wu; Li Lin; Kaihui Liu; Zhongfan Liu; Hailin Peng

2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals interactions between layers have attracted tremendous interest in recent years. Layered Bi2 Se3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi2 Se3 grid electrodes by copper-atom intercalation is presented. These Cu-intercalated 2D Bi2 Se3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi2 Se3 grid electrodes is greatly improved from 900 Ω sq-1 , 68% to 300 Ω sq-1 , 82% in the visible range; with better performance of 300 Ω sq-1 , 91% achieved in the near-infrared region. These unique properties of Cu-intercalated topological insulator grid nanostructures may boost their potential applications in high-performance optoelectronics, especially for infrared optoelectronic devices.

Collaboration


Dive into the Xu Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dapeng Yu

South University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi Li

Southeast University

View shared research outputs
Top Co-Authors

Avatar

Feng Zhai

Zhejiang Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge