Xuan Meng
East China University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuan Meng.
Chemical Papers | 2014
Huan Huang; Dezhi Yi; Yan-Nan Lu; Xiaolin Wu; Yunpeng Bai; Xuan Meng; Li Shi
Samples of activated bentonite and activated bentonite modified with CuCl and CuCl2, separately, were tested as dimethyl sulfide (DMS) adsorbents. The adsorption and desorption behaviours of DMS on the adsorbents were studied systematically. The adsorbents were characterised by nitrogen adsorption, XRD, and DMS-TPD tests. The addition of CuCl and CuCl2 to the activated carbon significantly enhanced the adsorption capacity of DMS, despite a notable decrease in the specific surface area and total pore volume of the activated bentonite. It is presumed that copper cation species may act as an adsorption site for DMS. The adsorption capacity of Cu(II)-bentonite was better than that of Cu(I)-bentonite. The DMS-TPD patterns indicate that the stronger electrophilicity of Cu(II) compared to that of Cu(I) caused it to interact with the DMS molecules more strongly, thus contributing to a better adsorptive performance. The Cu(II)-bentonite calcined at 150°C had the best DMS removal performance with a high sulphur capacity of 70.56 mg S g−1 adsorbent. The DMS removal performance became much lower with the increase in the calcination temperature, which appeared to be due to the decrease in the CuCl2·2H2O phase and the formation of the monoclinic Cu(OH)Cl phase.
Journal of Sulfur Chemistry | 2018
Baochuan Su; Li Shi; Xuan Meng; Xin Wang; Naiwang Liu
ABSTRACT Fluidized catalytic cracking (FCC) is an important link in heavy oil processing. Industrial FCC catalyst which mainly consists of molecular sieves, substrates and adhesives is used in large quantities every year. Spent FCC catalyst is one kind of hazardous solid waste that is hard to handle. In this paper, we used a spent FCC catalyst as a desulfurization adsorbent, and show that it displays advanced desulfurization property. Furthermore, regeneration experiment showed that calcination was an effective method to remove the sulfides adsorbed in spent FCC catalyst, after four cycles it still owned a high sulfur adsorption ability. The results of metal impregnation indicated that the high ability to remove sulfur in LPG was due to those metals deposited on WC. The sulfur removal further increased by calcination of the spent catalyst since carbon deposition on the catalyst surface which blocked the active sites was minimized by calcination, thus leading an increase in the number of active sites available. GRAPHICAL ABSTRACT
Environmental Technology | 2018
Zhan Yu; Dan Wang; Yue Yang; Xuan Meng; Naiwang Liu; Li Shi
ABSTRACT Low-cost activated carbon (KAC) was functionalized by HNO3, (NH4)2S2O8 and air oxidation, respectively, to remove dibenzothiophene (DBT) from model fuel. The changes in physical and chemical properties of these activated carbons were characterized by thermal analysis, elemental analysis, nitrogen adsorption apparatus, Raman spectra, scanning electron microscope and Boehm’s titration method. HNO3 and (NH4)2S2O8 oxidation result in a significant decrease in pore structure, while air oxidation only causes slight pore reduction due to the re-activation by O2. The oxygen-containing functional groups (OFGs) increase markedly after oxidative modification, in which (NH4)2S2O8 oxidation is considered as the most efficient method with respect to the introduction of OFGs. HNO3 and (NH4)2S2O8 oxidation are more selective to generate carboxyls and lactones, whereas air oxidation creates more phenols, carbonyls and ethers. The DBT adsorption capacity follows the order: NAC (HNO3-oxidized KAC) > OAC (air-oxidized KAC) > KAC > SAC ((NH4)2S2O8-oxidized KAC), implying the introduction of OFGs is beneficial for the DBT adsorption process, especially for selectivity, but excessive OFGs have a negative effect on the removal of DBT. Thus, to achieve high DBT adsorption performance, there should be a trade-off between the micropore volume and the OFGs amount. GRAPHICAL ABSTRACT
Chemical Papers | 2016
Xiao-Ling Yu; Yan-Nan Lu; Huan Huang; Dezhi Yi; Li Shi; Xuan Meng
A series of nickel-modified Y zeolites were prepared for the adsorption of dimethyl sulphide (DMS) in liquid hydrocarbon streams. The adsorption desulphurisation performance was investigated under ambient conditions of nickel-based adsorbents developed by the liquid-phase ion exchange (LPIE) method and the incipient wetness impregnation (IWI) method with and without the ultrasonic aid technique. It was found that the nickel-modified Y zeolite prepared by the IWI method with the ultrasonic aid technique with hydrogen reduction demonstrated a high sulphur capacity of 69.9 mg of S per g of sorbent at a break-through sulphur level of 10 μg g−1. The sorbents thus prepared were characterised by elemental analysis, XRD, TPR, H2 chemisorption, pyridine-FTIR, XPS, and SEM. The results showed that a high dispersion of metallic nickel atoms loaded on Y zeolite had an important role in determining the DMS removal capacity and the adsorption behaviour exhibited a pronounced dependence on the metal introduction method.
Applied Catalysis B-environmental | 2014
Dezhi Yi; Huan Huang; Xuan Meng; Li Shi
Industrial & Engineering Chemistry Research | 2013
Xuan Meng; Huan Huang; Li Shi
Industrial & Engineering Chemistry Research | 2013
Dezhi Yi; Huan Huang; Xuan Meng; Li Shi
Chemical Engineering Journal | 2013
Huan Huang; Dezhi Yi; Yan-Nan Lu; Xiaolin Wu; Yunpeng Bai; Xuan Meng; Li Shi
Bulletin of The Korean Chemical Society | 2012
Xuan Meng; Huan Huang; Huixin Weng; Li Shi
Bulletin of The Korean Chemical Society | 2013
Xiaolin Wu; Yunpeng Bai; Ying Tian; Xuan Meng; Li Shi; Received June