Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuanxuan Zhou is active.

Publication


Featured researches published by Xuanxuan Zhou.


PLOS ONE | 2012

Cardioprotective Effect of Paeonol and Danshensu Combination on Isoproterenol-Induced Myocardial Injury in Rats

Hua Li; Yanhua Xie; Qian Yang; Siwang Wang; Bangle Zhang; Jianbo Wang; Wei Cao; Lin Lin Bi; Jiyuan Sun; Shan Miao; Jing Hu; Xuanxuan Zhou; Pengcheng Qiu

Background Traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizaeare are prescribed together for their putative cardioprotective effects in clinical practice. However, the rationale of the combined use remains unclear. The present study was designed to investigate the cardioprotective effects of paeonol and danshensu (representative active ingredient of Cortex Moutan and Radix Salviae Milthiorrhizae, respectively) on isoproterenol-induced myocardial infarction in rats and its underlying mechanisms. Methodology Paeonol (80 mg kg−1) and danshensu (160 mg kg−1) were administered orally to Sprague Dawley rats in individual or in combination for 21 days. At the end of this period, rats were administered isoproterenol (85 mg kg−1) subcutaneously to induce myocardial injury. After induction, rats were anaesthetized with pentobarbital sodium (35 mg kg−1) to record electrocardiogram, then sacrificed and biochemical assays of the heart tissues were performed. Principal Findings Induction of rats with isoproterenol resulted in a marked (P<0.001) elevation in ST-segment, infarct size, level of serum marker enzymes (CK-MB, LDH, AST and ALT), cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GR, and GST) and protein expression of Bcl-2. Pretreatment with paeonol and danshensu combination showed a significant (P<0.001) decrease in ST-segment elevation, infarct size, cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant increase in the activities of endogenous antioxidants and protein expression of Bcl-2 and Nrf2 when compared with individual treated groups. Conclusions/Significance This study demonstrates the cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial infarction in rats. The mechanism might be associated with the enhancement of antioxidant defense system through activating of Nrf2 signaling and anti-apoptosis through regulating Bax, Bcl-2 and Caspase-3. It could provide experimental evidence to support the rationality of combinatorial use of traditional Chinese medicine in clinical practice.


International Journal of Biological Sciences | 2014

Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP.

Chen Lu; Jin Zhang; Xiaopeng Shi; Shan Miao; Linlin Bi; Song Zhang; Qian Yang; Xuanxuan Zhou; Meng Zhang; Yanhua Xie; Qing Miao; Siwang Wang

Parkinsons disease (PD) is the second most prevalent progressive neurodegenerative disease. Although several hypotheses have been proposed to explain the pathogenesis of PD, apoptotic cell death and oxidative stress are the most prevalent mechanisms. Tetramethylpyrazine (TMP) is a biological component that has been extracted from Ligusticum wallichii Franchat (ChuanXiong), which exhibits anti-apoptotic and antioxidant roles. In the current study, we aimed to investigate the possible protective effect of TMP against dopaminergic neuron injury in a rat model of Parkinsons disease induced by MPTP and to elucidate probable molecular mechanisms. The results showed that TMP could notably prevent MPTP-induced dopaminergic neurons damage, reflected by improvement of motor deficits, enhancement of TH expression and the content of dopamine and its metabolite, DOPAC. We observed MPTP-induced activation of mitochondrial apoptotic death pathway, evidenced by up-regulation of Bax, down-regulation of Bcl-2, release of cytochrome c and cleavage of caspase 3, which was significantly inhibited by TMP. Moreover, TMP could prevent MPTP-increased TBARS level and MPTP-decreased GSH level, indicating the antioxidant role of TMP in PD model. And the antioxidant role of TMP attributes to the prevention of MPTP-induced reduction of Nrf2 and GCLc expression. In conclusion, in MPTP-induced PD model, TMP prevents the down-regulation of Nrf2 and GCLc, maintaining redox balance and inhibiting apoptosis, leading to the attenuation of dopaminergic neuron damage. The effectiveness of TMP in treating PD potentially leads to interesting therapeutic perspectives.


International Journal of Molecular Sciences | 2010

Effect of Salvianolic Acid b and Paeonol on Blood Lipid Metabolism and Hemorrheology in Myocardial Ischemia Rabbits Induced by Pituitruin

Qian Yang; Siwang Wang; Yanhua Xie; Jianbo Wang; Hua Li; Xuanxuan Zhou; Wenbo Liu

The purpose of this study was to determine the therapeutic effect of salvianolic acid b and paeonol on coronary disease. The ischemia myocardial animal model is induced by administering pituitrin (20 μg·kg−1) intravenously via the abdominal vein. A combination of salvianolic acid b and paeonol (CSAP) (5, 10 and 15 mg/kg BW) was administrated to experimental rabbits. Biochemical indices were evaluated during six weeks of intervention. We found that the compound of salvianolic acid b and paeonol (5, 10 and 15 mg/kg BW) can markedly and dose-dependently reduce fibrinogen and malonaldehyde levels, increase the HDL level, improve blood viscosity and plasma viscosity in rabbits. In addition, the medicine can still reduce the ratio of NO/ET and the contents of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) in a dose-dependent manner. This study demonstrates that compound of salvianolic acid b and paeonol (5, 10 and 15 mg/kg BW) can improve the blood hemorrheology, decrease oxidative injury and repair the function of blood vessel endothelium, and subsequently prevent the development of Coronary disease.


International Immunopharmacology | 2015

Tetramethylpyrazine (TMP) exerts antitumor effects by inducing apoptosis and autophagy in hepatocellular carcinoma

Jiao Cao; Qing Miao; Shan Miao; Linlin Bi; Song Zhang; Qian Yang; Xuanxuan Zhou; Meng Zhang; Yanhua Xie; Jin Zhang; Siwang Wang

Hepatocellular carcinoma (HCC) is one of the most common types of liver cancers with high recurrence rate and mortality rate. Recent studies have indicated that tetramethylpyrazine (TMP), a purified chemical extracted from Ligusticum wallichii Franchat (ChuanXiong), possessed antitumor effects on HCC, but detailed mechanism remains unclear. Our study aims at investigating the antitumor effect of TMP on HCC and its underlying mechanism. We found that TMP inhibited cell proliferation of HepG2 cells in a dose-dependent way, and xenograft tumor models also indicated that high concentrations of TMP administration inhibited tumor growth. Next, flow cytometric analysis and transmission electron microscope images showed that TMP enhanced cell apoptosis in HepG2 cells, and western blot results showed that TMP promoted cleavage of caspase-3 and PARP in vitro and in vivo. We also found that TMP caused autophagy in HCC in vitro and in vivo. In order to examine the role of autophagy in TMP-induced apoptosis, 3-methyladenine (3-MA) was used to block the action of autophagy. Our data showed TMP-induced autophagy might be a pro-apoptosis process in HCC. Furthermore, the results of anti-oxidative enzymes and oxidation-sensitive fluorescent probe 2, 7-dichlorofluorescein diacetate (DCFH-DA) indicated that TMP induced ROS generation and inhibition of ROS diminished the anticancer function of TMP. In conclusion, our studies provide new insights into the mechanisms underlying the antitumor effect of TMP and suggest that TMP can be a novel therapeutic regimen for HCC.


International Journal of Molecular Sciences | 2012

Chronic Supplementation of Paeonol Combined with Danshensu for the Improvement of Vascular Reactivity in the Cerebral Basilar Artery of Diabetic Rats

Jing Hu; Ya-ling Li; Zilin Li; Hua Li; Xuanxuan Zhou; Pengcheng Qiu; Qian Yang; Siwang Wang

One of the leading causes of death in the world is cerebrovascular disease. Numerous Chinese traditional medicines, such as Cortex Moutan (root bark of Paeonia suffruticosa Andrew) and Radix Salviae miltiorrhizae (root and rhizome of Salvia miltiorrhiza Bunge), protect against cerebrovascular diseases and exhibit anti-atherosclerotic effects. Traditional medicines have been routinely used for a long time in China. In addition, these two herbs are prescribed together in clinical practice. Therefore, the pharmacodynamic interactions between the active constituents of these two herbs, which are paeonol (Pae) and danshensu (DSS), should be particularly studied. The study of Pae and DSS can provide substantial foundations in understanding their mechanisms and empirical evidence to support clinical practice. This study investigated the effects and possible mechanisms of the pharmacodynamic interaction between Pae and DSS on cerebrovascular malfunctioning in diabetes. Experimental diabetes was induced in rats, which was then treated with Pae, DSS, and Pae + DSS for eight weeks. Afterward, cerebral arteries from all groups were isolated and equilibrated in an organ bath with Krebs buffer and ring tension. Effects of Pae, DSS, and Pae + DSS were observed on vessel relaxation with or without endothelium as well as on the basal tonus of vessels from normal and diabetic rats. Indexes about oxidative stress were also determined. We report that the cerebral arteries from diabetic rats show decreased vascular reactivity to acetylcholine (ACh) which was corrected in Pae, DSS, and Pae + DSS treated groups. Furthermore, phenylephrine (PE)-induced contraction response decreased in the treated groups. Phenylephrine and CaCl2-induced vasoconstrictions are partially inhibited in the three treated groups under Ca2+-free medium. Pre-incubated with tetraethylammonium, a non-selective K+ channel blocker, the antagonized relaxation responses increased in DSS and Pae + DSS treated diabetic groups compared with those in diabetic and Pae-treated diabetic groups. In addition, superoxide dismutase activity and thiobarbituric acid reactive substances content significantly changed in the presence of Pae + DSS. We therefore conclude that both Pae and DSS treatments prevent diabetes-induced vascular damage. Furthermore, Pae + DSS prove to be the most efficient treatment regimen. The combination of Pae and DSS produce significant protective effects through the reduction of oxidative stress and through intracellular Ca2+ regulatory mechanisms.


BMC Complementary and Alternative Medicine | 2014

Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds

Qian Yang; Weidong Cao; Xuanxuan Zhou; Wei Cao; Yanhua Xie; Siwang Wang

BackgroundThe current study was to evaluate the anti-thrombotic effect of alpha-linolenic acid (ALA) which was isolated and purified from Jiaomu in vivo.MethodsThe seeds were crushed and subsequently subjected to saponification, acid hydrolysis, gradient freezing, urea inclusion and complexation of silver nitrate to obtain the unsaturated fatty acids. The chemical characteristics of isolated ALA were validated by 1HNMR, 13CNMR and mass spectrometry, and then the anti-thrombotic effect of ALA and its mixture with linoleic acid (1:1) were evaluated in the following experiments.ResultsThe alpha-linolenic acid was isolated and purified from Jiaomu through our newly established methods. ALA and its mixture with linoleic acid can prolong the hemorrhage and coagulation time as well as enhanced the survival rate of mice subjected to collagen-adrenaline induced thrombosis. In addition, the thrombosis on A-V bypass and platelet aggregation of rats will be reduced after treated with ALA or its mixture, and the expression level of Akt and PI3K protein decreased 26% and 31%, respectively.ConclusionsWe designed and optimized a very simple and high-yield procedure to isolate ALA and linoleic acid mixture from seeds of Zanthoxylum bungeanum Maxim and demonstrated that such mixture can obtain a good anti-thrombotic effect through the modulation of PI3K/Akt signaling.


International Journal of Nanomedicine | 2014

Immunoliposome co-delivery of bufalin and anti-cD40 antibody adjuvant induces synergetic therapeutic efficacy against melanoma

Ying Li; Jiani Yuan; Qian Yang; Wei Cao; Xuanxuan Zhou; Yanhua Xie; Honghai Tu; Ya Zhang; Siwang Wang

Liposomes constitute one of the most popular nanocarriers for improving the delivery and efficacy of agents in cancer patients. The purpose of this study was to design and evaluate immunoliposome co-delivery of bufalin and anti-CD40 to induce synergetic therapeutic efficacy while eliminating systemic side effects. Bufalin liposomes (BFL) conjugated with anti-CD40 antibody (anti-CD40-BFL) showed enhanced cytotoxicity compared with bufalin alone. In a mouse B16 melanoma model, intravenous injection of anti-CD40-BFL achieved smaller tumor volume than did treatment with BFL (average: 117 mm3 versus 270 mm3, respectively); the enhanced therapeutic efficacy through a caspase-dependent pathway induced apoptosis, which was confirmed using terminal deoxynucleotidyl transferase-mediated dUTP-Fluorescein nick end labeling and Western blot assay. Meanwhile, anti-CD40-BFL elicited unapparent body-weight changes and a significant reduction in serum levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, interferon-γ, and hepatic enzyme alanine transaminase, suggesting minimized systemic side effects. This may be attributed to the mechanism by which liposomes are retained within the tumor site for an extended period of time, which is supported by the following biodistribution and flow cytometric analyses. Taken together, the results demonstrated a highly promising strategy for liposomal vehicle transport of anti-CD40 plus bufalin that can be used to enhance antitumor effects via synergetic systemic immunity while blocking systemic toxicity.


Acta Pharmacologica Sinica | 2017

2,3,5,4′-Tetrahydroxystilbene-2- O -β- D -glucoside protects murine hearts against ischemia/reperfusion injury by activating Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress

Meng Zhang; Li-ming Yu; Hang Zhao; Xuanxuan Zhou; Qian Yang; Fan Song; Li Yan; Mengen Zhai; Buying Li; Bin Zhang; Zhenxiao Jin; Weixun Duan; Si-wang Wang

2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a water-soluble active component extracted from Polygonum multiflorum Thunb. A number of studies demonstrate that TSG exerts cardioprotective effects. Since endoplasmic reticulum (ER) stress plays a key role in myocardial ischemia/reperfusion (MI/R)-induced cell apoptosis, we sought to determine whether modulation of the ER stress during MI/R injury was involved in the cardioprotective action of TSG. Male mice were treated with TSG (60 mg·kg−1·d−1, ig) for 2 weeks and then were subjected to MI/R surgery. Pre-administration of TSG significantly improved post-operative cardiac function, and suppressed MI/R-induced myocardial apoptosis, evidenced by the reduction in the myocardial apoptotic index, serum levels of LDH and CK after 6 h of reperfusion. TSG (0.1–1000 μmol/L) did not affect the viability of cultured H9c2 cardiomyoblasts in vitro, but pretreatment with TSG dose-dependently decreased simulated ischemia/reperfusion (SIR)-induced cell apoptosis. Furthermore, both in vivo and in vitro studies revealed that TSG treatment activated the Notch1/Hes1 signaling pathway and suppressed ER stress, as evidenced by increasing Notch1, Notch1 intracellular domain (NICD), Hes1, and Bcl-2 expression levels and by decreasing p-PERK/PERK ratio, p-eIF2α/eIF2α ratio, and ATF4, CHOP, Bax, and caspase-3 expression levels. Moreover, the protective effects conferred by TSG on SIR-treated H9c2 cardiomyoblasts were abolished by co-administration of DAPT (the Notch1 signaling inhibitor). In summary, TSG ameliorates MI/R injury in vivo and in vitro by activating the Notch1/Hes1 signaling pathway and attenuating ER stress-induced apoptosis.


The American Journal of Chinese Medicine | 2016

Tetrahydroxystilbene Glucoside Inhibits Excessive Autophagy and Improves Microvascular Endothelial Dysfunction in Prehypertensive Spontaneously Hypertensive Rats.

Qianqian Dong; Wenjuan Xing; Feng Fu; Zhenghua Liu; Jie Wang; Xiangyan Liang; Xuanxuan Zhou; Qian Yang; Wei Zhang; Feng Gao; Siwang Wang; Haifeng Zhang

Autophagy exists in vascular endothelial cells, but the relationship between autophagy and blood vessel dysfunction in hypertension remains elusive. This study aimed to investigate role of autophagy in vascular endothelial dysfunction in prehypertension and hypertension and the underlying mechanisms involved. Furthermore, we sought to determine if and how tetrahydroxystilbene glucoside (TSG), a resveratrol analogue and active ingredient of Polygonum multiflorum Thunb used for its cardiovascular protective properties in traditional Chinese medicine, influences vascular endothelial function. Male spontaneously hypertensive rats (SHRs) aged 4 weeks (young) and 12 weeks (adult) were studied and the vascular function of isolated aorta and mesenteric artery was assessed in vitro. Compared with Wistar Kyoto rats (WKY), young and adult SHRs showed endothelial dysfunction of the aorta and mesenteric artery, along with decreased pAkt, pmTOR, and autophagic marker protein p62 and increased LC3 II/I in microvascular but not aortic tissues. TSG administration for 14 days significantly improved mesenteric vascular endothelial function, increased levels of pAkt and pmTOR, and decreased autophagy. Pretreatment of young SHRs with the mTOR inhibitor rapamycin blocked the antiautophagic and vasodilative effects of TSG. Moreover, TSG significantly activated Akt-mTOR signaling in HUVECs and reduced the autophagic levels in vitro, which were almost completely blocked by rapamycin. In summary, mesenteric endothelial dysfunction in prehypertensive SHRs was at least partly attributable to excessive autophagy in vascular tissues. TSG partly restored microvascular endothelial dysfunction through activating the Akt/mTOR pathway, which consequently suppressed autophagy, indicating that TSG could be potentially applied to protect vascular function against subclinical changes in prehypertension.


Iubmb Life | 2016

TSG attenuates LPC-induced endothelial cells inflammatory damage through notch signaling inhibition.

Jing Zhao; Yuan Liang; Fan Song; Shouzhu Xu; Lun Nian; Xuanxuan Zhou; Siwang Wang

Lysophosphatidylcholine (LPC) induces inflammation in endothelial cells (ECs) but the mechanism is not fully understood. The Notch signaling pathway is involved in chronic EC inflammation, but its functions in LPC‐induced endothelial inflammatory damage and 2,3,5,4′‐tetrahydroxystilbene‐2‐O‐β‐d‐glucosides (TSG) protective effect during LPC‐induced inflammatory damage in human umbilical vein endothelial cells (HUVECs) is largely unknown. We report that Notch signaling activation contributed to LPC‐induced injury in HUVECs, and that TSG protected HUVECs from LPC‐induced injury by antagonizing Notch signaling activation by LPC. γ‐secretase inhibitor (DAPT), a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to inhibit Notch activity. HUVECs were exposed to LPC in the presence or absence of TSG, DAPT, and Notch1 siRNA. LPC treatment of HUVECs resulted in reduced cell viability, and Notch1 and Hes1 upregulation. Either silencing of Notch1 by siRNA or pharmacological inhibition of Notch signaling by DAPT prevented the loss of cell viability, and induction of apoptosis, and enhanced expression Notch1, Hes1 and MCP‐1 by LPC in HUVECs. Similarly, TSG reduced LPC stimulation of Notch1, Hes1, and MCP‐1 expression, prevented the release of IL‐6 and CRP and rescued HUVECs from LPC‐induced cell damage. Our data indicate that the Notch signaling pathway is a crucial mediator of endothelial inflammatory damage and that TSG protects against endothelial inflammatory damage by inhibiting the Notch signaling pathway. Our findings suggest that targeting Notch signaling by natural products such as TSG is a promising strategy for the prevention and treatment of chronic inflammation associated diseases, including atherosclerosis.

Collaboration


Dive into the Xuanxuan Zhou's collaboration.

Top Co-Authors

Avatar

Qian Yang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Siwang Wang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanhua Xie

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiyuan Sun

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Cao

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Hua Li

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Shan Miao

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Fan Song

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Linlin Bi

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Meng Zhang

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge