Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuchu Que is active.

Publication


Featured researches published by Xuchu Que.


Circulation Research | 2011

Oxidation-Specific Epitopes Are Danger-Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity

Yury I. Miller; Soo Ho Choi; Philipp Wiesner; Longhou Fang; Richard Harkewicz; Agnès Boullier; Ayelet Gonen; Cody J. Diehl; Xuchu Que; Erica N. Montano; Peter X. Shaw; Sotirios Tsimikas; Christoph J. Binder; Joseph L. Witztum

Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen-associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage)-associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Furthermore, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provide a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and C-reactive protein recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy.


Clinical Microbiology Reviews | 2000

Cysteine Proteinases and the Pathogenesis of Amebiasis

Xuchu Que; Sharon L. Reed

Amebiasis is a major cause of morbidity and mortality throughout the tropical world. Entamoeba histolytica is now recognized as a separate species from the morphologically identical E. dispar, which cannot invade. Cysteine proteinases are a key virulence factor of E. histolytica and play a role in intestinal invasion by degrading the extracellular matrix and circumventing the host immune response through cleavage of secretory immunoglobulin A (sIgA), IgG, and activation of complement. Cysteine proteinases are encoded by at least seven genes, several of which are found in E. histolytica but not E. dispar. A number of new animal models, including the formation of liver abscesses in SCID mice and intestinal infection in human intestinal xenografts, have proven useful to confirm the critical role of cysteine proteinases in invasion. Detailed structural analysis of cysteine proteinases should provide further insights into their biochemical function and may facilitate the design of specific inhibitors which could be used as potential chemotherapeutic agents in the future.


Journal of Clinical Investigation | 1993

Cloning of a virulence factor of Entamoeba histolytica. Pathogenic strains possess a unique cysteine proteinase gene.

Sharon L. Reed; J Bouvier; Pollack As; J C Engel; M Brown; Ken Hirata; Xuchu Que; A Eakin; P Hagblom; Frances D. Gillin

Cysteine proteinases are hypothesized to be important virulence factors of Entamoeba histolytica, the causative agent of amebic dysentery and liver abscesses. The release of a histolytic cysteine proteinase from E. histolytica correlates with the pathogenicity of both axenic strains and recent clinical isolates as determined by clinical history of invasive disease, zymodeme analysis, and cytopathic effect. We now show that pathogenic isolates have a unique cysteine proteinase gene (ACP1). Two other cysteine proteinase genes (ACP2, ACP3) are 85% identical to each other and are present in both pathogenic and nonpathogenic isolates. ACP1 is only 35 and 45% identical in sequence to the two genes found in all isolates and is present on a distinct chromosome-size DNA fragment. Presence of the ACP1 gene correlates with increased proteinase expression and activity in pathogenic isolates as well as cytopathic effect on a fibroblast monolayer, an in vitro assay of virulence. Analysis of the predicted amino acid sequence of the ACP1 proteinase gene reveals homology with cysteine proteinases released by activated macrophages and invasive cancer cells, suggesting an evolutionarily conserved mechanism of tissue invasion. The observation that a histolytic cysteine proteinase gene is present only in pathogenic isolates of E. histolytica suggests that this aspect of virulence in amebiasis is genetically predetermined.


Molecular and Biochemical Parasitology | 2002

Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica

Xuchu Que; Linda S. Brinen; Penny Sue Perkins; Scott Herdman; Ken Hirata; Bruce E. Torian; Harvey Rubin; James H. McKerrow; Sharon L. Reed

Cysteine proteinases, which are encoded by at least seven genes, play a critical role in the pathogenesis of invasive amebiasis caused by Entamoeba histolytica. The study of these enzymes has been hampered by the inability to obtain significant quantities of the individual native proteinases. We have now expressed functionally active recombinant ACP1 (EhCP3) and ACP2 (EhCP2) proteinases in baculoviral expression vectors. The purified recombinant ACP1 and ACP2 proteinases exhibited similar activities for fluorogenic peptide substrates, especially in their preference for an arginine residue at the P2 position. Although ACP1 and ACP2 are structurally cathepsin L, homology modeling revealed that the aspartic acid in the S2 pocket would result in a substrate specificity for positively charged amino acids, like cathepsin B. The hydrolysis of peptide substrates was strongly inhibited by small peptidyl inhibitors specifically designed for parasitic cysteine proteinases. Confocal and immunoelectron microscopy localization of the proteinases with monoclonal and monospecific antibodies raised to the recombinant enzymes and peptides demonstrated that ACP2 was membrane-associated while ACP1 was cytoplasmic. Following phagocytosis of erythrocytes, ACP1, as well as the membrane-associated cysteine proteinase, ACP2, were incorporated into phagocytic vesicles. These studies suggest that E. histolytica has a redundancy of cysteine proteinases for intracellular digestion and that they may be recruited from different cellular compartments to the site of digestion of phagocytosed cells. The production of active proteinases in baculovirus and large scale recombinant enzymes in bacteria should further our understanding of the role of different cysteine proteinase gene products in virulence.


Infection and Immunity | 2003

A Surface Amebic Cysteine Proteinase Inactivates Interleukin-18

Xuchu Que; Soo-Hyun Kim; Mohammed Sajid; Lars Eckmann; Charles A. Dinarello; James H. McKerrow; Sharon L. Reed

ABSTRACT Amebiasis is a major cause of morbidity and mortality worldwide. Invasion by Entamoeba histolytica trophozoites causes secretion of proinflammatory cytokines from host epithelial cells, leading to a local acute inflammatory response, followed by lysis of colonic cells. Extracellular cysteine proteinases from amebic trophozoites are key virulence factors and have a number of important interactions with host defenses, including cleavage of immunoglobulin G (IgG), IgA, and complement components C3 and C5. Amebic lysates have also been shown to activate the precursor to interleukin 1-beta (proIL-1β), mimicking the action of caspase-1. IL-18 is also a central cytokine, which induces gamma interferon (IFN-γ) and activates macrophages, one of the main host defenses against invading trophozoites. Because proIL-18 is also activated by caspase-1, we evaluated whether amebic proteinases had a similar effect. Instead, we found that recombinant proIL-18 was cleaved into smaller fragments by the complex of surface-associated and released amebic proteinases. To evaluate the function of an individual proteinase from the complex pool, we expressed an active surface proteinase, EhCP5, which is functional only in E. histolytica. Recombinant EhCP5 expressed in Pichia pastoris had kinetic properties similar to those of the native enzyme with respect to substrate specificity and sensitivity to proteinase inhibitors. In contrast to the activation of proIL-1β by amebic lysates, the purified proteinase cleaved proIL-18 and mature IL-18 to biologically inactive fragments. These studies suggest that the acute host response and amebic invasion result from a complex interplay of parasite virulence factors and host defenses. E. histolytica may block the host inflammatory response by a novel mechanism, inactivation of IL-18.


Journal of Biological Chemistry | 2007

Cathepsin Cs Are Key for the Intracellular Survival of the Protozoan Parasite, Toxoplasma gondii

Xuchu Que; Juan C. Engel; David J. P. Ferguson; Annette Wunderlich; Stanislas Tomavo; Sharon L. Reed

Cysteine proteases play key roles in apicomplexan invasion, organellar biogenesis, and intracellular survival. We have now characterized five genes encoding papain family cathepsins from Toxoplasma gondii, including three cathepsin Cs, one cathepsin B, and one cathepsin L. Unlike endopeptidases cathepsin B and L, T. gondii cathepsin Cs are exopeptidases and remove dipeptides from unblocked N-terminal substrates of proteins or peptides. TgCPC1 was the most highly expressed cathepsin mRNA in tachyzoites (by real-time PCR), but three cathepsins, TgCPC1, TgCPC2, and TgCPB, were undetectable in in vivo bradyzoites. The specific cathepsin C inhibitor, Gly-Phe-dimethylketone, selectively inhibited the TgCPCs activity, reducing parasite intracellular growth and proliferation. The targeted disruption of TgCPC1 does not affect the invasion and growth of tachyzoites as TgCPC2 is then up-regulated and may substitute for TgCPC1. TgCPC1 and TgCPC2 localize to constitutive secretory vesicles of tachyzoites, the dense granules. T. gondii cathepsin Cs are required for peptide degradation in the parasitophorous vacuole as the degradation of the marker protein, Escherichia coli β-lactamase, secreted into the parasitophorous vacuole of transgenic tachyzoites was completely inhibited by the cathepsin C inhibitor. Cathepsin C inhibitors also limited the in vivo infection of T. gondii in the chick embryo model of toxoplasmosis. Thus, cathepsin Cs are critical to T. gondii growth and differentiation, and their unique specificities could be exploited to develop novel chemotherapeutic agents.


Molecular and Biochemical Parasitology | 2009

The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin.

Robert Huang; Xuchu Que; Ken Hirata; Linda S. Brinen; Ji Hyun Lee; Elizabeth Hansell; Juan C. Engel; Mohammed Sajid; Sharon L. Reed

Toxoplasma gondii is an obligate intracellular parasite of all vertebrates, including man. Successful invasion and replication requires the synchronized release of parasite proteins, many of which require proteolytic processing. Unlike most parasites, T. gondii has a limited number of Clan CA, family C1 cysteine proteinases with one cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsin Cs (TgCPC1, 2, 3). Previously, we characterized toxopain, the only cathepsin B enzyme, which localizes to the rhoptry organelle. Two cathepsin Cs are trafficked through dense granules to the parasitophorous vacuole where they degrade peptides. We now report the cloning, expression, and modeling of the sole cathepsin L gene and the identification of two new endogenous inhibitors. TgCPL differs from human cathepsin L with a pH optimum of 6.5 and its substrate preference for leucine (vs. phenylalanine) in the P2 position. This distinct preference is explained by homology modeling, which reveals a non-canonical aspartic acid (Asp 216) at the base of the predicted active site S2 pocket, which limits substrate access. To further our understanding of the regulation of cathepsins in T. gondii, we identified two genes encoding endogenous cysteine proteinase inhibitors (ICPs or toxostatins), which are active against both TgCPB and TgCPL in the nanomolar range. Over expression of toxostatin-1 significantly decreased overall cysteine proteinase activity in parasite lysates, but had no detectable effect on invasion or intracellular multiplication. These findings provide important insights into the proteolytic cascades of T. gondii and their endogenous control.


Molecular and Biochemical Parasitology | 2000

Two genes encoding unique proliferating-cell-nuclear-antigens are expressed in Toxoplasma gondii.

Michael N. Guerini; Xuchu Que; Sharon L. Reed; Michael W. White

Complete cDNA sequences encoding two novel proliferating-cell-nuclear-antigens (designated TgPCNA1 and 2) were isolated from a Toxoplasma gondii tachyzoite cDNA library, and Southern analysis using cDNA probes confirmed the presence of two PCNA genes in T. gondii genomic DNA. Expressed-sequence-tags were identified in the T. gondii database that matched each TgPCNA cDNA and closely related PCNA coding regions (designated PfPCNA1 and 2) were discovered in sequence data obtained from chromosome 12 and 13 of Plasmodium falciparum. TgPCNA1 and PfPCNA1 were found to share the highest amino acid identity at 49% compared to TgPCNA2 and PfPCNA2 (37% identity) whereas intraspecies PCNAs were determined to be less similar (27-30% identity). Phylogenetic analysis suggests the two apicomplexan PCNAs are the result of a gene duplication in the common ancestor of these parasites. Antibodies specific for TgPCNA1 ( approximately 40 kDa) or TgPCNA2 ( approximately 37 kDa) detected single antigen species in tachyzoite extracts that were expressed at similar levels in isolates representative of the T. gondii Type I, II and III strains. TgPCNA1-specific cDNA probes detected multiple mRNA species on Northern blots, which when combined, were expressed 5-7 fold higher than the single species of mRNA detected by the TgPCNA2 probe. The difference in the number of mRNA species and comparative mRNA levels suggests each TgPCNA gene is independently controlled, although in light of the nearly equal levels of protein a post-transcriptional mechanism may be responsible for equalizing protein expression.


Infection and Immunity | 2004

Toxopain-1 is critical for infection in a novel chicken embryo model of congenital toxoplasmosis

Xuchu Que; Annette Wunderlich; Keith A. Joiner; Sharon L. Reed

ABSTRACT We tested the hypothesis that cathepsins and specifically toxopain-1, a cathepsin B, play a critical role in the pathogenesis of toxoplasmosis. We found that inhibiting the expression of toxopain-1-specific mRNA and protein by >60% significantly decreased the capacity of the parasites to multiply and invade in vitro. To relate these in vitro results to the role of toxopain-1 in pathogenesis in vivo, we developed a novel chicken embryo model of congenital toxoplasmosis. Inhibiting either toxopain-1 expression or specific cysteine proteinase activity significantly reduced congenital infection of chicken embryos, as determined by histopathology and by the number of parasites quantified by real-time PCR. Our new model provides key in vivo validation for the hypothesis that toxopain-1 is a potential drug target in Toxoplasma gondii and also provides a new animal model for rapid, inexpensive screening of antiparasitic compounds.


Journal of Lipid Research | 2012

Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease

Shahzada Amir; Ayelet Gonen; Gregor Leibundgut; Xuchu Que; Erika Jensen-Jarolim; Oswald Wagner; Sotirios Tsimikas; Joseph L. Witztum; Christoph J. Binder

Autoantibodies specific for malondialdehyde-modified LDL (MDA-LDL) represent potential biomarkers to predict cardiovascular risk. However, MDA-LDL is a high variability antigen with limited reproducibility. To identify peptide mimotopes of MDA-LDL, phage display libraries were screened with the MDA-LDL-specific IgM monoclonal Ab LRO4, and the specificity and antigenic properties of MDA mimotopes were assessed in vitro and in vivo. We identified one 12-mer linear (P1) and one 7-mer cyclic (P2) peptide carrying a consensus sequence, which bound specifically to murine and human anti-MDA monoclonal Abs. Furthermore, MDA mimotopes were found to mimic MDA epitopes on the surface of apoptotic cells. Immunization of mice with P2 resulted in the induction of MDA-LDL-specific Abs, which strongly immunostained human atherosclerotic lesions. We detected IgG and IgM autoAbs to both MDA mimotopes in sera of healthy subjects and patients with myocardial infarction and stable angina pectoris undergoing percutaneous coronary intervention, and the titers of autoAbs correlated significantly with respective Ab titers against MDA-LDL. In conclusion, we identified specific peptides that are immunological mimotopes of MDA. These mimotopes can serve as standardized and reproducible antigens that will be useful for diagnostic and therapeutic applications in cardiovascular disease.

Collaboration


Dive into the Xuchu Que's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon L. Reed

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayelet Gonen

University of California

View shared research outputs
Top Co-Authors

Avatar

Cody J. Diehl

University of California

View shared research outputs
Top Co-Authors

Avatar

Calvin Yeang

University of California

View shared research outputs
Top Co-Authors

Avatar

Ken Hirata

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph J. Binder

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge