Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xude Wang is active.

Publication


Featured researches published by Xude Wang.


Irrigation Science | 1999

Water-yield relations and water-use efficiency of winter wheat in the North China Plain

Huiwen Zhang; Xude Wang; M. You; Chengzhang Liu

Abstract. Limited precipitation restricts yield of winter wheat (Triticum aestivum L.) grown in the North China Plain. Water stress effects on yield can be avoided or minimized by application of irrigation. We examined the multiseasonal irrigation experiments in four locations of the piedmont and lowland in the region, and developed crop water-stress sensitivity index, relationship between seasonal evapotranspiration (ET) and yield, and crop water production functions. By relating relative yield to relative ET deficit, we found that the crop was more sensitive to water stress from stem elongation to heading and from heading to milking. For limited irrigation, irrigation is recommended during the stages sensitive to water stress. Grain yield was 258–322 g m−2 in the piedmont and 260–280 g m−2 in the lowland under rainfed conditions. The corresponding seasonal ET was 242–264 mm in the piedmont and 247–281 mm in the lowland. Irrigation significantly increased seasonal ET and therefore grain yield as a result of increased kernel numbers per m−2 and kernels per ear. On average, one irrigation increased grain yield by 21–43% and two to four irrigations by 60–100%. Grain yield was linearly related to seasonal ET with a slope of 1.15 kg m−3 in the lowland and 1.73 kg m−3 in the piedmont. Water-use efficiency was 0.98–1.22 kg m−3 for rainfed wheat and 1.20–1.40 kg m−3 for the wheat irrigated 2–4 times. Grain yield response to the amount of irrigation (IRR) was developed using a quadratic function and used to analyze different irrigation scenarios. To achieve the maximum grain yield, IRR was 240 mm in the piedmont and 290 mm in the lowland. When the maximum net profit was achieved, IRR was 195 mm and 250 mm in the piedmont and lowland, respectively. The yield response curve to IRR showed a plateau over a large range of IRR, indicating a great potential in saving IRR while maintaining reasonable high levels of grain yield.n


Molecular & Cellular Proteomics | 2014

Acetylome Analysis Reveals Diverse Functions of Lysine Acetylation in Mycobacterium tuberculosis

Fengying Liu; Mingkun Yang; Xude Wang; Shanshan Yang; Jing Gu; Jie Zhou; Xian-En Zhang; Jiao-Yu Deng; Feng Ge

The lysine acetylation of proteins is a reversible post-translational modification that plays a critical regulatory role in both eukaryotes and prokaryotes. Mycobacterium tuberculosis is a facultative intracellular pathogen and the causative agent of tuberculosis. Increasing evidence shows that lysine acetylation may play an important role in the pathogenesis of M. tuberculosis. However, only a few acetylated proteins of M. tuberculosis are known, presenting a major obstacle to understanding the functional roles of reversible lysine acetylation in this pathogen. We performed a global acetylome analysis of M. tuberculosis H37Ra by combining protein/peptide prefractionation, antibody enrichment, and LC-MS/MS. In total, we identified 226 acetylation sites in 137 proteins of M. tuberculosis H37Ra. The identified acetylated proteins were functionally categorized into an interaction map and shown to be involved in various biological processes. Consistent with previous reports, a large proportion of the acetylation sites were present on proteins involved in glycolysis/gluconeogenesis, the citrate cycle, and fatty acid metabolism. A NAD+-dependent deacetylase (MRA_1161) deletion mutant of M. tuberculosis H37Ra was constructed and its characterization showed a different colony morphology, reduced biofilm formation, and increased tolerance of heat stress. Interestingly, lysine acetylation was found, for the first time, to block the immunogenicity of a peptide derived from a known immunogen, HspX, suggesting that lysine acetylation plays a regulatory role in immunogenicity. Our data provide the first global survey of lysine acetylation in M. tuberculosis. The dataset should be an important resource for the functional analysis of lysine acetylation in M. tuberculosis and facilitate the clarification of the entire metabolic networks of this life-threatening pathogen.


Molecular Microbiology | 2010

CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY.

Ru Li; Jing Gu; Yuanyuan Chen; Chuan-Le Xiao; Liwei Wang; Zhi-Ping Zhang; Li-Jun Bi; Hongping Wei; Xude Wang; Jiao-Yu Deng; Xian-En Zhang

The silent information regulator (Sir2) family proteins are NAD+‐dependent deacetylases. Although a few substrates have been identified, functions of the bacteria Sir2‐like protein (CobB) still remain unclear. Here the role of CobB on Escherichia coli chemotaxis was investigated. We used Western blotting and mass spectrometry to show that the response regulator CheY is a substrate of CobB. Surface plasmon resonance (SPR) indicated that acetylation affects the interaction between CheY and the flagellar switch protein FliM. The presence of intact flagella in knockout strains ΔcobB, Δacs, Δ(cobB) Δ(acs), Δ(cheA) Δ(cheZ), Δ(cheA) Δ(cheZ) Δ(cobB) and Δ(cheA) Δ(cheZ) Δ(acs) was confirmed by electron microscopy. Genetic analysis of these knockout strains showed that: (i) the ΔcobB mutant exhibited reduced responses to chemotactic stimuli in chemotactic assays, whereas the Δacs mutant was indistinguishable from the parental strain, (ii) CheY from the ΔcobB mutant showed a higher level of acetylation, indicating that CobB can mediate the deacetylation of CheY in vivo, and (iii) deletion of cobB reversed the phenotype of Δ(cheA) Δ(cheZ). Our findings suggest that CobB regulates E. coli chemotaxis by deacetylating CheY. Thus a new function of bacterial cobB was identified and also new insights of regulation of bacterial chemotaxis were provided.


Molecular & Cellular Proteomics | 2015

Succinylome Analysis Reveals the Involvement of Lysine Succinylation in Metabolism in Pathogenic Mycobacterium tuberculosis

Mingkun Yang; Yan Wang; Ying Chen; Zhongyi Cheng; Jing Gu; Jiao-Yu Deng; Lijun Bi; Chuangbin Chen; Ran Mo; Xude Wang; Feng Ge

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen.


Cell Reports | 2014

Mycobacterium Tuberculosis Proteome Microarray for Global Studies of Protein Function and Immunogenicity

Jiao-Yu Deng; Lijun Bi; Lin Zhou; Shujuan Guo; Joy Fleming; He-Wei Jiang; Ying Zhou; Jia Gu; Qiu Zhong; Zong-xiu Wang; Zhonghui Liu; Rui-ping Deng; Jing Gao; Tao Chen; Wenjuan Li; Jing-fang Wang; Xude Wang; Haicheng Li; Feng Ge; Guofeng Zhu; Hainan Zhang; Jing Gu; Fan-Lin Wu; Zhi-Ping Zhang; Dianbing Wang; Haiying Hang; Yang Li; Li Cheng; Xiang He; Shengce Tao

Poor understanding of the basic biology of Mycobacterium tuberculosis (MTB), the etiological agent of tuberculosis, hampers development of much-needed drugs, vaccines, and diagnostic tests. Better experimental tools are needed to expedite investigations of this pathogen at the systems level. Here, we present a functional MTB proteome microarray covering most of the proteome and an ORFome library. We demonstrate the broad applicability of the microarray by investigating global protein-protein interactions, small-molecule-protein binding, and serum biomarker discovery, identifying 59 PknG-interacting proteins, 30 bis-(3-5)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding proteins, and 14 MTB proteins that together differentiate between tuberculosis (TB) patients with active disease and recovered individuals. Results suggest that the MTB rhamnose pathway is likely regulated by both the serine/threonine kinase PknG and c-di-GMP. This resource has the potential to generate a greater understanding of key biological processes in the pathogenesis of tuberculosis, possibly leading to more effective therapies for the treatment of this ancient disease.


FEBS Journal | 2013

Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase.

Qunfang Zhang; Jing Gu; Peng Gong; Xude Wang; Shun Tu; Li-Jun Bi; Ziniu Yu; Zhi-Ping Zhang; Zongqiang Cui; Hongping Wei; Shengce Tao; Xian-En Zhang

CobB is a bacterial NAD+‐dependent protein deacetylase. Although progress has been made in functional studies of this protein in recent years, its substrates and biological functions are still largely unclear. Using proteome microarray technology, potential substrates of Escherichia coli CobB were screened and nine proteins were identified, including N‐hydroxyarylamine O‐acetyltransferase (NhoA). In vitro acetylation/deacetylation of NhoA was verified by western blotting and mass spectrometry, and two acetylated lysine residues were identified. Site‐specific mutagenesis experiments showed that mutation of each acetylated lysine decreased the acetylation level of NhoA in vitro. Further analysis showed that variant NhoA proteins carrying substitutions at the two acetylated lysine residues are involved in both the O‐acetyltransferase and N‐acetyltransferase activity of NhoA. Structural analyses were also performed to explore the effects of the acetylated lysine residues on the activity of NhoA. These results suggest that reversible acetylation may play a role in the activity of Escherichia coli NhoA.


Molecular Microbiology | 2011

Comparative analysis of mycobacterial NADH pyrophosphatase isoforms reveals a novel mechanism for isoniazid and ethionamide inactivation

Xude Wang; Jing Gu; Ting Wang; Li-Jun Bi; Zhi-Ping Zhang; Zongqiang Cui; Hongping Wei; Jiao-Yu Deng; Xian-En Zhang

NADH pyrophosphatase (NudC) catalyses the hydrolysis of NAD(H) to AMP and NMN(H) [nicotinamide mononucleotide (reduced form)]. NudC multiple sequence alignment reveals that homologues from most Mycobacterium tuberculosis isolates, but not other mycobacterial species, have a polymorphism at the highly conserved residue 237. To elucidate the functional significance of this polymorphism, comparative analyses were performed using representative NudC isoforms from M.u2003tuberculosis H37Rv (NudCRv) and M.u2003bovis BCG (NudCBCG). Biochemical analysis showed that the P237Q polymorphism prevents dimer formation, and results in a loss of enzymatic activity. Importantly, NudCBCG was found to degrade the active forms of isoniazid (INH), INH‐NAD and ethionamide (ETH), ETH‐NAD. Consequently, overexpression of NudCBCG in Mycobacterium smegmatis mc2155 and M.u2003bovis BCG resulted in a high level of resistance to both INH and ETH. Further genetic studies showed that deletion of the nudC gene in M.u2003smegmatis mc2155 and M.u2003bovis BCG resulted in increased susceptibility to INH and ETH. Moreover, inactivation of NudC in both strains caused a defect in drug tolerance phenotype for both drugs in exposure assays. Taken together, these data suggest that mycobacterial NudC plays an important role in the inactivation of INH and ETH.


PLOS ONE | 2011

Rapid Colorimetric Testing for Pyrazinamide Susceptibility of M. tuberculosis by a PCR-Based In-Vitro Synthesized Pyrazinamidase Method

Man Zhou; Xuelei Geng; Jun Chen; Xude Wang; Dianbing Wang; Jiao-Yu Deng; Zhi-Ping Zhang; Weihua Wang; Xian-En Zhang; Hongping Wei

Pyrazinamide (PZA) is an important first-line anti-tuberculosis drug. But PZA susceptibility test is challenging because PZA activity is optimal only in an acid environment that inhibits the growth of M. tuberculosis. For current phenotypic methods, inconsistent results between different labs have been reported. Direct sequencing of pncA gene is being considered as an accurate predictor for PZA susceptibility, but this approach needs expensive sequencers and a mutation database to report the results. An in-vitro synthesized Pyrazinamidase (PZase) assay was developed based on PCR amplification of pncA gene and an in vitro wheat germ system to express the pncA gene into PZase. The activity of the synthesized PZase was used as an indicator for PZA susceptibility. Fifty-one clinical isolates were tested along with pncA sequencing and the BACTEC MGIT 960 methods. The in-vitro synthesized PZase assay was able to detect PZA susceptibility of M. tuberculosis within 24 h through observing the color difference either by a spectrometer or naked eyes. This method showed agreements of 100% (33/33) and 88% (14/16) with the pncA sequencing method, and agreements of 96% (27/28) and 65% (15/23) with the BACTEC MGIT 960 method, for susceptible and resistant strains, respectively. The novel in-vitro synthesized PZase assay has significant advantages over current methods, such as its fast speed, simplicity, no need for expensive equipment, and the potentials of being a direct test, predicting resistance level and easy reading results by naked eyes. After confirmation by more clinical tests, this method may provide a radical change to the current PZA susceptibility assays.


Biochemical and Biophysical Research Communications | 2014

Acs is essential for propionate utilization in Escherichia coli

Fengying Liu; Jing Gu; Xude Wang; Xian-En Zhang; Jiao-Yu Deng

Bacteria like Escherichia coli can use propionate as sole carbon and energy source. All pathways for degradation of propionate start with propionyl-CoA. However, pathways of propionyl-CoA synthesis from propionate and their regulation mechanisms have not been carefully examined in E. coli. In this study, roles of the acetyl-CoA synthetase encoding gene acs and the NAD(+)-dependent protein deacetylase encoding gene cobB on propionate utilization in E. coli were investigated. Results from biochemical analysis showed that, reversible acetylation also modulates the propionyl-CoA synthetase activity of Acs. Subsequent genetic analysis revealed that, deletion of acs in E. coli results in blockage of propionate utilization, suggesting that acs is essential for propionate utilization in E. coli. Besides, deletion of cobB in E. coli also results in growth defect, but only under lower concentrations of propionate (5mM and 10mM propionate), suggesting the existence of other propionyl-CoA synthesis pathways. In combination with previous observations, our data implies that, for propionate utilization in E. coli, a primary amount of propionyl-CoA seems to be required, which is synthesized by Acs.


Fems Microbiology Letters | 2015

Discovery and characterization of Ku acetylation in Mycobacterium smegmatis.

Ying Zhou; Tao Chen; Lin Zhou; Joy Fleming; Jiao-Yu Deng; Xude Wang; Liwei Wang; Yingying Wang; Xiaoli Zhang; Wenjing Wei; Li-Jun Bi

Lysine acetylation is an important post-translational modification and is known to regulate many eukaryotic cellular processes. Little, however, is known about acetylated proteins in prokaryotes. Here, using immunoblotting, mass spectrometry and mutagenesis studies, we investigate the acetylation dynamics of the DNA repair protein Ku and its relationship with the deacetylase protein Sir2 and the non-homologous end joining (NHEJ) pathway in Mycobacterium smegmatis. We report that acetylation of Ku increases with growth, while NHEJ activity decreases, providing support for the hypothesis that acetylation of Ku may be involved in the DNA damage response in bacteria. Ku has multiple lysine sites. Our results indicate that K29 is an important acetylation site and that deficiency of Sir2 or mutation of K29 affects the quantity of Ku and its acetylation dynamics. Our findings expand knowledge of acetylation targets in prokaryotes and indicate a new direction for further research on bacterial DNA repair mechanisms.

Collaboration


Dive into the Xude Wang's collaboration.

Top Co-Authors

Avatar

Jiao-Yu Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Gu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xian-En Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhi-Ping Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li-Jun Bi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Feng Ge

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongping Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingkun Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shanshan Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shengce Tao

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge