Xudong Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xudong Li.
Bioresource Technology | 2014
Maoxia Chen; Wenchao Wang; Ye Feng; Xiaohua Zhu; Houzhen Zhou; Zhouliang Tan; Xudong Li
To give reference for the application of heterotrophic nitrification-aerobic denitrification bacteria in actual wastewater treatment, the impact resistance of extreme pH, low temperature, heavy metals and high salinity on ammonia removal by a typical heterotrophic nitrifying-aerobic denitrifying bacterium Aeromonas sp. HN-02 was investigated. The results showed that HN-02 demonstrated strong acid- and alkali-resistance. In addition, it remained active at 5°C, and the removal rates of ammonia and COD were 0.90 mg L(-1)h(-1) and 22.34 mg L(-1)h(-1), respectively. Under the same extent of immediate temperature drop, the temperature correction coefficients of ammonia, COD removal rates and cell growth rate were close. Moreover, HN-02 could survive in the solution containing 0.5 mg L(-1) Cu(2+) or 8 mg L(-1) Zn(2+), or 0.5 mg L(-1) of equivalent Cu(2+)-Zn(2+). Furthermore, efficient ammonia removal was retained at salinity below 20 g L(-1), thus it could be identified as a halotolerant bacterium. At last, stronger stress resulted in higher ΔCOD/ΔTN ratio.
Chemosphere | 2017
Yangwu Chen; Shuhuan Lan; Longhui Wang; Shiyang Dong; Houzhen Zhou; Zhouliang Tan; Xudong Li
The performance and stabilization of biological wastewater treatment systems 1are closely related to the microbial community structure and dynamics. In this paper, the effects and mechanisms of influent composition, process configuration, operating parameters (dissolved oxygen [DO], pH, hydraulic retention time [HRT] and sludge retention time [SRT]) and environmental condition (temperature) to the change of microbial community structure and process performance (nitrification, denitrification, biological phosphorus removal, organics mineralization and utilization, etc.) are critically reviewed. Furthermore, some strategies for microbial community structure regulation, mainly bioaugmentation, process adjustment and operating parameters optimization, applied in the current wastewater treatment systems are also discussed. Although the recent studies have strengthened our understanding on the relationship between microbial community structure and wastewater treatment process performance, how to fully tap the microbial information, optimize the microbial community structure and maintain the process performance in wastewater treatment systems are still full of challenges.
Biotechnology and Bioprocess Engineering | 2013
Zhiying Yan; Xiaofeng Liu; Yuexiang Yuan; Yinzhang Liao; Xudong Li
With the transition of livestock production from the traditional small household farming to large-scale centralized breeding, the odor pollution caused by livestock manure has become pressing in China. In this study, two yeast strains Y1 and Y2 with high deodorization efficiency were isolated from the sample collected from an outlet in a swine farm in Shuangliu County, Sichuan Province. The scale-up deodorization experiments were carried out for strains Y1, Y2, and their mixture Y1+Y2. The results showed that the reduction rate of treatments on NH3 was in the sequence of Y1+Y2 (35.6 ∼ 68.7%) >Y1 (20.3 ∼ 63.7%) >Y2 (−11.7 ∼ 53.8%). The reduction rate of treatments on H2S was in the sequence of Y1+Y2 (47.2 ∼ 70.1%) > Y2 (36.6 ∼ 60.8%) > Y1 (27.6 ∼ 42.0%). The reduction rate of treatments on total volatile organic compounds (TVOC) was in the sequence of Y1+Y2 (49.1 ∼ 68.3%) > Y1 (36.2 ∼ 54.6%) >Y2 (20.8 ∼ 48.6%). The reduction rate of treatments on odor intensity was in the sequence of Y1+Y2 (27.2–60.3%) > Y1 (16.3 ∼ 38.5%) >Y2 (−0.4 ∼ 35.2%). Furthermore, the concentrations of VFAs, indole, skatole, total nitrogen (TN), organic nitrogen (ON), total sulfur (TS), and ammonium nitrogen (AN) in swine manure during deodorization by yeast strains Y1, Y2, and their mixture Y1+Y2 were assayed. The results showed the concentrations of VFAs, indole, and skatole in the manure with Y1, Y2, and Y1+Y2 treatments were all lower than those of the control group. The concentrations of TN, ON, and TS in treatments were all higher than that of the control group. The concentrations of AN in the treatment groups were all lower than those of the control group.
Journal of Hazardous Materials | 2016
Maoxia Chen; Rong Fan; Wenhui Zou; Houzhen Zhou; Zhouliang Tan; Xudong Li
A novel bacterial strain BDG-2 was isolated and used to augment the treatment of silicon plate manufacturing wastewater that primarily contains diethylene glycol monobutyl ether (DGBE). BDG-2 was identified as a Serratia sp. Under the optimal conditions of 30 °C, pH 9 and DGBE concentration of 2000 mg L(-1), the bioaugmented system achieved 96.92% COD removal after 39.9h. Laboratory-scale technological matching results indicated that, in a biofilm process with the addition of 100 mg L(-1) ammonia and 5 mg L(-1) total phosphorus (TP), 70.61% COD removal efficiency could be obtained in 46 h. Addition of polyaluminium chloride (PAC) to the reactors during the suspension process enhanced the settleability of the BDG-2 culture. Subsequently, successful start-up and stable operation of a full-scale bioaugmented treatment facilities were accomplished, and the volumetric organic load in the plug-flow aeration tank was 2.17 ± 0.81 kg m(-3) d(-1). The effluent COD of the facilities was stable and always below 100 mg L(-1).
Chemosphere | 2018
Maoxia Chen; Yangwu Chen; Shiyang Dong; Shuhuan Lan; Houzhen Zhou; Zhouliang Tan; Xudong Li
In this study, the nitrification performance, metabolic activity, antioxidant enzyme activity as well as bacterial community of mixed nitrifying bacteria culture under different temperature dropping strategies [(#1) growth temperature kept at 20 °C; (#2) sharp1 decreased from 20 °C to 10 °C; (#3) growth at 20 °C for 6 days followed by sharp decrease to 10 °C; and (#4) gradual decreased from 20 °C to 10 °C] were evaluated. It was shown that acclimation at 20 °C for 6 days allowed to maintain better nitrification activity at 10 °C. The nitrite oxidation capacity of nitrifiers was significantly correlated with the relative light unit (RLU) (p < .05) and the fluctuation of superoxide dismutase (SOD) enzyme activity (p < .01). With serial #3 showed the highest RLU levels and the least SOD enzyme fluctuation as compared to serials #2 and #4. Throughout the experimental period, Nitrosospira and Nitrosomonas as well as Nitrospira were identified as the predominant ammonia-oxidizing bacteria (AOB) and nitrate-oxidizing bacteria (NOB). The dynamic change of AOB/NOB ratios and nitrification activity in serials #2-#4 demonstrated that AOB recovered better than NOB with long-term 10 °C exposure, and the nitrification performance was mainly limited by the nitrite oxidation capacity of NOB. Applying 6 days acclimation at 20 °C was beneficial for the mixed nitrifying bacteria culture to cope with low temperature (10 °C) stress, possibly due to the maintenance of metabolic activity, antioxidant enzyme activity stability as well as appropriate AOB/NOB ratio.
Bioresource Technology | 2018
Xiang Xia; Yajie Liang; Shuhuan Lan; Xudong Li; Yifei Xie; Wei Yuan
A compound biopolymer flocculant (CBF) produced using corn ethanol wastewater as substrate was investigated. After optimization of culture conditions, 3.08 g/L of purified CBF was extracted from the culture broth following 48 h of cultivation. The CBF macromolecule is mainly composed of protein (15.9%) and polysaccharide (81.8%). The polysaccharide component includes neutral sugars (28.92%), amino sugars (4.04%) and uronic acid (11.69%), with the neutral sugars being glucose, mannose, and lactose at a molar ratio of 4.1:1.5:1.9. CBF is pH tolerant from 3.0 to 12.0 and thermal tolerant from 20 to 100 °C, allowing for its application over a wide range of conditions. Furthermore, the Langmuir model better describes CBF adsorption on kaolin clay, as compared to the Freundlich model. Charge neutralization and bridging mechanisms are the primary flocculation mechanisms. In addition, CBF shows a high methylene blue removal efficiency. These results indicate that this compound biopolymer flocculant has great potential in dye wastewater treatment.
Ecotoxicology and Environmental Safety | 2018
Wei Yuan; Yajie Liang; Xiang Xia; Yifei Xie; Shuhuan Lan; Xudong Li
Cadmium (Cd2+) pollution has become a global environmental problem. This study is the first to demonstrate the feasibility and effects of applying biological iron sulfide composites (BISC) for the protection of Cd2+ exposed fish, aiming at remediation of Cd2+ polluted waters during emergency pollution events. Experimental results indicate that BISC can remove Cd2+ efficiently and significantly protect Cd2+ exposed Danio rerio, by increasing its overall survival rates. Meanwhile, the protective effect of BISC is significantly enhanced with optimized BISC dosing ratios of 2.4 or more, as well as with more rapid onset of BISC dosing following Cd2+ exposure and in water with higher pH levels in the range of 6-8, with D. rerio survival rates increased by more than 90% (P = 0.05). Additionally, BISC confers advantages over SRB and combinations of its constituents, with effective removal of Cd2+ and increasing survival rates of Cd2+ exposed D. rerio.
Chemosphere | 2018
Xiang Xia; Shuhuan Lan; Xudong Li; Yifei Xie; Yajie Liang; Peihan Yan; Zhengyang Chen; Yunxiao Xing
Klebsiella variicola B16, a microbial bioflocculant (MBF-B16)-producing bacteria, was isolated and identified by its 16S rRNA sequence, biochemical properties, and physiological characteristics. The effects of culture conditions on MBF-B16 production, including carbon source, nitrogen source, C/N ratio, initial pH, and culture temperature, were investigated in this study. Results showed that 6.96 g of MBF-B16 could be extracted from a 1-L culture broth under optimized conditions. Chemical analysis showed that polysaccharide and protein were the main components. The neutral sugar consisted of galactose only, which was proposed in Klebsiella genus for the first time. In addition, a composite flocculant (CF) that contains polyaluminum ferric chloride (PAFC) and MBF-B16 for the removal of turbidity and SS in drinking water was optimized by response surface methodology. CF could reduce PAFC dosage by about 56.2-72%. Charge neutralization and adsorption bridging effect were the primary flocculation mechanisms.
Lab on a Chip | 2014
Yunfang Tang; Mingzhe Gan; Yifei Xie; Xudong Li; Liwei Chen
Journal of Environmental Biology | 2013
Dong Luo; Yifei Xie; Zhouliang Tan; Xudong Li