Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xudong Liao is active.

Publication


Featured researches published by Xudong Liao.


Journal of Clinical Investigation | 2011

Krüppel-like factor 4 regulates macrophage polarization

Xudong Liao; Nikunj Sharma; Fehmida Kapadia; Guangjin Zhou; Yuan Lu; Hong Hong; Kaavya Paruchuri; Ganapati H. Mahabeleshwar; Elise Dalmas; Nicolas Venteclef; Chris A. Flask; Julian Kim; Bryan W. Doreian; Kurt Q. Lu; Klaus H. Kaestner; Anne Hamik; Karine Clément; Mukesh K. Jain

Current paradigms suggest that two macrophage subsets, termed M1 and M2, are involved in inflammation and host defense. While the distinct functions of M1 and M2 macrophages have been intensively studied - the former are considered proinflammatory and the latter antiinflammatory - the determinants of their speciation are incompletely understood. Here we report our studies that identify Krüppel-like factor 4 (KLF4) as a critical regulator of macrophage polarization. Macrophage KLF4 expression was robustly induced in M2 macrophages and strongly reduced in M1 macrophages, observations that were recapitulated in human inflammatory paradigms in vivo. Mechanistically, KLF4 was found to cooperate with Stat6 to induce an M2 genetic program and inhibit M1 targets via sequestration of coactivators required for NF-κB activation. KLF4-deficient macrophages demonstrated increased proinflammatory gene expression, enhanced bactericidal activity, and altered metabolism. Furthermore, mice bearing myeloid-specific deletion of KLF4 exhibited delayed wound healing and were predisposed to developing diet-induced obesity, glucose intolerance, and insulin resistance. Collectively, these data identify KLF4 as what we believe to be a novel regulator of macrophage polarization.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Transcriptional Control of Macrophage Polarization

Derin Tugal; Xudong Liao; Mukesh K. Jain

Macrophages are key regulators of many organ systems, including innate and adaptive immunity, systemic metabolism, hematopoiesis, vasculogenesis, malignancy, and reproduction. The pleiotropic roles of macrophages are mirrored by similarly diverse cellular phenotypes. A simplified schema classifies macrophages as M1, classically activated macrophages, or M2, alternatively activated macrophages. These cells are characterized by their expression of cell surface markers, secreted cytokines and chemokines, and transcription and epigenetic pathways. Transcriptional regulation is central to the differential speciation of macrophages, and several major pathways have been described as essential for subset differentiation. In this review, we discuss the transcriptional regulation of macrophages.


Journal of Clinical Investigation | 2012

Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice.

Guangjin Zhou; Anne Hamik; Lalitha Nayak; Hongmei Tian; Hong Shi; Yuan Lu; Nikunj Sharma; Xudong Liao; Andrew T. Hale; Lauren M Boerboom; Ryan E. Feaver; Huiyun Gao; Amar Desai; Alvin H. Schmaier; Stanton L. Gerson; Yunmei Wang; G. Brandon Atkins; Brett R. Blackman; Daniel I. Simon; Mukesh K. Jain

The endothelium regulates vascular homeostasis, and endothelial dysfunction is a proximate event in the pathogenesis of atherothrombosis. Stimulation of the endothelium with proinflammatory cytokines or exposure to hemodynamic-induced disturbed flow leads to a proadhesive and prothrombotic phenotype that promotes atherothrombosis. In contrast, exposure to arterial laminar flow induces a gene program that confers a largely antiadhesive, antithrombotic effect. The molecular basis for this differential effect on endothelial function remains poorly understood. While recent insights implicate Kruppel-like factors (KLFs) as important regulators of vascular homeostasis, the in vivo role of these factors in endothelial biology remains unproven. Here, we show that endothelial KLF4 is an essential determinant of atherogenesis and thrombosis. Using in vivo EC-specific KLF4 overexpression and knockdown murine models, we found that KLF4 induced an antiadhesive, antithrombotic state. Mechanistically, we demonstrated that KLF4 differentially regulated pertinent endothelial targets via competition for the coactivator p300. These observations provide cogent evidence implicating endothelial KLFs as essential in vivo regulators of vascular function in the adult animal.


Journal of Molecular and Cellular Cardiology | 2010

Krüppel-like factor 4 regulates pressure-induced cardiac hypertrophy

Xudong Liao; Saptarsi M. Haldar; Yuan Lu; Darwin Jeyaraj; Kaavya Paruchuri; Monika Nahori; Yingjie Cui; Klaus H. Kaestner; Mukesh K. Jain

Krüppel-like factors (KLF) are a subfamily of the zinc-finger class of transcriptional regulators that play important roles in diverse cellular processes. While a number of KLFs are expressed in cardiomyocytes, little is known about their specific roles in the heart in vivo. Here, we demonstrate that KLF4 is induced by hypertrophic stimuli in cultured cardiomyocytes and in the mouse heart. Overexpression of KLF4 in neonatal rat ventricular myocytes inhibits three cardinal features of cardiomyocyte hypertrophy: fetal gene expression, protein synthesis, and cell enlargement. Conversely, mice with cardiomyocyte-specific deletion of KLF4 (CM-K4KO) are highly sensitized to transverse aortic constriction (TAC) and exhibit high rates of mortality. CM-K4KO mice that survive TAC display severe pathologic cardiac hypertrophy characterized by increased cardiac mass, depressed LV systolic function, pulmonary congestion, cavity dilation and attenuated LV wall thickening when compared to control genotypes. In addition, CM-K4KO mice develop increased myocardial fibrosis and apoptotic cell death after TAC. Collectively, these studies implicate KLF4 as a novel transcriptional regulator that is indispensible for the hearts response to stress in vivo.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Myeloid Krüppel-Like Factor 4 Deficiency Augments Atherogenesis in ApoE−/− Mice—Brief Report

Nikunj Sharma; Yuan Lu; Guangjin Zhou; Xudong Liao; Parul Kapil; Puneet Anand; Ganapati H. Mahabeleshwar; Jonathan S. Stamler; Mukesh K. Jain

Objective—To investigate the role of Krüppel-like factor 4 (KLF4), an essential transcriptional regulator of macrophage polarization (M1/M2), in the pathogenesis of atherosclerosis. Methods and Results—Despite the acknowledged importance of macrophages in atherosclerosis, the role of M1 (classically activated or proinflammatory) versus M2 (alternatively activated or anti-inflammatory) macrophages in this process remains incompletely understood. We recently identified KLF4 as a regulator of macrophage subset specification; that is, KLF4 promotes M2 and inhibits M1 phenotype. Here, we provide evidence that KLF4-deficient macrophages exhibit enhanced proinflammatory activation and foam cell formation in response to oxidized lipids. In vivo, myeloid KLF4-deficient mice (ApoE−/− background) develop significantly more vascular inflammation and atherosclerotic lesion formation. Conclusion—Our findings identify myeloid KLF4 as an essential regulator of vascular inflammation and experimental atherogenesis.


Journal of Biological Chemistry | 2014

Kruppel-like Factor 15 Is a Critical Regulator of Cardiac Lipid Metabolism

Domenick A. Prosdocimo; Priti Anand; Xudong Liao; Han Zhu; Shamanthika Shelkay; Pedro Artero-Calderon; Lilei Zhang; Jacob Kirsh; D'Vesharronne Moore; Mariana G. Rosca; Edwin J. Vazquez; Janos Kerner; Kemal Marc Akat; Zev Williams; Jihe Zhao; Hisashi Fujioka; Thomas Tuschl; Xiaodong Bai; P. Christian Schulze; Charles L. Hoppel; Mukesh K. Jain; Saptarsi M. Haldar

Background: Metabolic homeostasis is central to normal cardiac function. The molecular mechanisms underlying metabolic plasticity in the heart remain poorly understood. Results: Kruppel-like factor 15 (KLF15) is a direct and independent regulator of myocardial lipid flux. Conclusion: KLF15 is a core component of the transcriptional circuitry that governs cardiac metabolism. Significance: This work is the first to implicate the KLF transcription factor family in cardiac metabolism. The mammalian heart, the bodys largest energy consumer, has evolved robust mechanisms to tightly couple fuel supply with energy demand across a wide range of physiologic and pathophysiologic states, yet, when compared with other organs, relatively little is known about the molecular machinery that directly governs metabolic plasticity in the heart. Although previous studies have defined Kruppel-like factor 15 (KLF15) as a transcriptional repressor of pathologic cardiac hypertrophy, a direct role for the KLF family in cardiac metabolism has not been previously established. We show in human heart samples that KLF15 is induced after birth and reduced in heart failure, a myocardial expression pattern that parallels reliance on lipid oxidation. Isolated working heart studies and unbiased transcriptomic profiling in Klf15-deficient hearts demonstrate that KLF15 is an essential regulator of lipid flux and metabolic homeostasis in the adult myocardium. An important mechanism by which KLF15 regulates its direct transcriptional targets is via interaction with p300 and recruitment of this critical co-activator to promoters. This study establishes KLF15 as a key regulator of myocardial lipid utilization and is the first to implicate the KLF transcription factor family in cardiac metabolism.


Journal of Biological Chemistry | 2014

Endothelial Krüppel-like Factor 4 Regulates Angiogenesis and the Notch Signaling Pathway

Andrew T. Hale; Hongmei Tian; Ejike Anih; Fernando O. Recio; Mohammad Shatat; Trent Johnson; Xudong Liao; Diana Ramírez-Bergeron; Aaron Proweller; Masakazu Ishikawa; Anne Hamik

Background: The transcription factor Krüppel-like factor 4 (KLF4) is a critical regulator of endothelial cell biology. Results: Sustained expression of endothelial KLF4 limits tumor growth by creating ineffective angiogenesis. Conclusion: KLF4 is an upstream regulator of angiogenesis in part by mediating Notch expression and activity. Significance: KLF4 regulates sprouting angiogenesis and may be a therapeutic target in regulation of tumor angiogenesis. Regulation of endothelial cell biology by the Notch signaling pathway (Notch) is essential to vascular development, homeostasis, and sprouting angiogenesis. Although Notch determines cell fate and differentiation in a wide variety of cells, the molecular basis of upstream regulation of Notch remains poorly understood. Our group and others have implicated the Krüppel-like factor family of transcription factors as critical regulators of endothelial function. Here, we show that Krüppel-like factor 4 (KLF4) is a central regulator of sprouting angiogenesis via regulating Notch. Using a murine model in which KLF4 is overexpressed exclusively in the endothelium, we found that sustained expression of KLF4 promotes ineffective angiogenesis leading to diminished tumor growth independent of endothelial cell proliferation or cell cycling effects. These tumors feature increased vessel density yet are hypoperfused, leading to tumor hypoxia. Mechanistically, we show that KLF4 differentially regulates expression of Notch receptors, ligands, and target genes. We also demonstrate that KLF4 limits cleavage-mediated activation of Notch1. Finally, we rescue Notch target gene expression and the KLF4 sprouting angiogenesis phenotype by supplementation of DLL4 recombinant protein. Identification of this hitherto undiscovered role of KLF4 implicates this transcription factor as a critical regulator of Notch, tumor angiogenesis, and sprouting angiogenesis.


Journal of Clinical Investigation | 2013

Kruppel-like factor 15 is critical for vascular inflammation

Yuan Lu; Lisheng Zhang; Xudong Liao; Panjamaporn Sangwung; Domenick A. Prosdocimo; Guangjin Zhou; Alexander R. Votruba; Leigh Brian; Yuh Jung Han; Huiyun Gao; Yunmei Wang; Koichi Shimizu; Kaitlyn Weinert-Stein; Maria Khrestian; Daniel I. Simon; Neil J. Freedman; Mukesh K. Jain

Activation of cells intrinsic to the vessel wall is central to the initiation and progression of vascular inflammation. As the dominant cellular constituent of the vessel wall, vascular smooth muscle cells (VSMCs) and their functions are critical determinants of vascular disease. While factors that regulate VSMC proliferation and migration have been identified, the endogenous regulators of VSMC proinflammatory activation remain incompletely defined. The Kruppel-like family of transcription factors (KLFs) are important regulators of inflammation. In this study, we identified Kruppel-like factor 15 (KLF15) as an essential regulator of VSMC proinflammatory activation. KLF15 levels were markedly reduced in human atherosclerotic tissues. Mice with systemic and smooth muscle-specific deficiency of KLF15 exhibited an aggressive inflammatory vasculopathy in two distinct models of vascular disease: orthotopic carotid artery transplantation and diet-induced atherosclerosis. We demonstrated that KLF15 alters the acetylation status and activity of the proinflammatory factor NF-κB through direct interaction with the histone acetyltransferase p300. These studies identify a previously unrecognized KLF15-dependent pathway that regulates VSMC proinflammatory activation.


Journal of Clinical Investigation | 2015

Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis

Xudong Liao; Rongli Zhang; Yuan Lu; Domenick A. Prosdocimo; Panjamaporn Sangwung; Lilei Zhang; Guangjin Zhou; Puneet Anand; Ling Lai; Teresa C. Leone; Hisashi Fujioka; Fang Ye; Mariana G. Rosca; Charles L. Hoppel; P. Christian Schulze; E. Dale Abel; Jonathan S. Stamler; Daniel P. Kelly; Mukesh K. Jain

Mitochondrial homeostasis is critical for tissue health, and mitochondrial dysfunction contributes to numerous diseases, including heart failure. Here, we have shown that the transcription factor Kruppel-like factor 4 (KLF4) governs mitochondrial biogenesis, metabolic function, dynamics, and autophagic clearance. Adult mice with cardiac-specific Klf4 deficiency developed cardiac dysfunction with aging or in response to pressure overload that was characterized by reduced myocardial ATP levels, elevated ROS, and marked alterations in mitochondrial shape, size, ultrastructure, and alignment. Evaluation of mitochondria isolated from KLF4-deficient hearts revealed a reduced respiration rate that is likely due to defects in electron transport chain complex I. Further, cardiac-specific, embryonic Klf4 deletion resulted in postnatal premature mortality, impaired mitochondrial biogenesis, and altered mitochondrial maturation. We determined that KLF4 binds to, cooperates with, and is requisite for optimal function of the estrogen-related receptor/PPARγ coactivator 1 (ERR/PGC-1) transcriptional regulatory module on metabolic and mitochondrial targets. Finally, we found that KLF4 regulates autophagy flux through transcriptional regulation of a broad array of autophagy genes in cardiomyocytes. Collectively, these findings identify KLF4 as a nodal transcriptional regulator of mitochondrial homeostasis.


Nature Communications | 2015

Circadian control of bile acid synthesis by a KLF15- Fgf15 axis

Shuxin Han; Rongli Zhang; Rajan Jain; Hong Shi; Lilei Zhang; Guangjin Zhou; Panjamaporn Sangwung; Derin Tugal; G. Brandon Atkins; Domenick A. Prosdocimo; Yuan Lu; Xiaonan Han; Patrick Tso; Xudong Liao; Jonathan A. Epstein; Mukesh K. Jain

Recent studies have shown that starburst dwarf galaxies have steeply rising rotation curves in their inner parts, pointing to a close link between the intense star formation and a centrally concentrated mass distribution (baryons and dark matter). More quiescent dwarf irregulars typically have slowly rising rotation curves, although some “compact” irregulars with steep, inner rotation curves exist. We analyze archival Hubble Space Telescope images of two nearby “compact” irregular galaxies (NGC 4190 and NGC 5204), which were selected solely on the basis of their dynamical properties and their proximity. We derive their recent star-formation histories by fitting colormagnitude diagrams of resolved stellar populations, and find that the star-formation properties of both galaxies are consistent with those of known starburst dwarfs. Despite the small sample, this strongly reinforces the notion that the starburst activity is closely related to the inner shape of the potential well.Circadian control of nutrient availability is critical to efficiently meet the energetic demands of an organism. Production of bile acids (BAs), which facilitate digestion and absorption of nutrients, is a major regulator of this process. Here we identify a KLF15-Fgf15 signalling axis that regulates circadian BA production. Systemic Klf15 deficiency disrupted circadian expression of key BA synthetic enzymes, tissue BA levels and triglyceride/cholesterol absorption. Studies in liver-specific Klf15-knockout mice suggested a non-hepatic basis for regulation of BA production. Ileal Fgf15 is a potent inhibitor of BA synthesis. Using a combination of biochemical, molecular and functional assays (including ileectomy and bile duct catheterization), we identify KLF15 as the first endogenous negative regulator of circadian Fgf15 expression. Elucidation of this novel pathway controlling circadian BA production has important implications for physiologic control of nutrient availability and metabolic homeostasis.

Collaboration


Dive into the Xudong Liao's collaboration.

Top Co-Authors

Avatar

Mukesh K. Jain

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Rongli Zhang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Yuan Lu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Guangjin Zhou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Panjamaporn Sangwung

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Lilei Zhang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Domenick A. Prosdocimo

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hisashi Fujioka

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Anne Hamik

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hong Shi

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge