Xue-Hai Zhu
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xue-Hai Zhu.
Nature Communications | 2014
Ding Sheng Jiang; Xiang Wei; Xiao Fei Zhang; Yu Liu; Yanqiong Zhang; Ke Chen; Lu Gao; Heng Zhou; Xue-Hai Zhu; Peter Liu; Bond Lau W; Xin-Liang Ma; Zou Y; Xiao-Dong Zhang; Guo-Chang Fan; Hongliang Li
Interferon regulatory factor 8 (IRF8) is known to affect the innate immune response, for example, by regulating the differentiation and function of immune cells. However, whether IRF8 can influence cardiac hypertrophy is unknown. Here we show that IRF8 levels are decreased in human dilated/hypertrophic cardiomyopathic hearts and in murine hypertrophic hearts. Mice overexpressing Irf8 specifically in the heart are resistant to aortic banding (AB)-induced cardiac hypertrophy, whereas mice lacking IRF8 either globally or specifically in cardiomyocytes develop an aggravated phenotype induced by pressure overload. Mechanistically, we show that IRF8 directly interacts with NFATc1 to prevent NFATc1 translocation and thus inhibits the hypertrophic response. Inhibition of NFATc1 ameliorates the cardiac abnormalities in IRF8−/− mice after AB. In contrast, constitutive activation of NFATc1 nullifies the protective effects of IRF8 on cardiac hypertrophy in IRF8-overexpressing mice. Our results indicate that IRF8 is a potential therapeutic target in pathological cardiac hypertrophy.
Hypertension | 2014
Ding Sheng Jiang; Liangpeng Li; Ling Huang; Jun Gong; Hao Xia; Xiaoxiong Liu; Nian Wan; Xiang Wei; Xue-Hai Zhu; Yingjie Chen; Xin Chen; Xiao-Dong Zhang; Hongliang Li
Interferon regulatory factor 1 (IRF1), a critical member of the IRF family, was previously shown to be associated with the immune system and to be involved in apoptosis and tumor suppression. However, the role of IRF1 in pressure overload–induced cardiac remodeling has remained unclear. Using genetic approaches, we established a central role for the IRF1 transcription factor in the regulation of cardiac remodeling both in vivo and in vitro, and we determined the mechanism underlying this process. The expression level of IRF1 was remarkably altered in both failing human hearts and hypertrophic murine hearts. Transgenic mice with cardiac-specific IRF1 overexpression exacerbated aortic banding–induced cardiac hypertrophy, ventricular dilation, fibrosis, and dysfunction, whereas IRF1-deficient (knockout) mice exhibited a significant reduction in the hypertrophic response. Similar results were observed in a global IRF1-knockout rat model. Mechanistically, the prohypertrophic effects elicited by IRF1 in response to pathological stimuli were associated with the direct activation of inducible nitric oxide synthase (iNOS). Furthermore, we identified 1 IRF1-binding site in the promoter region of the iNOS gene, which was essential for its transcription. To examine the IRF1-iNOS axis in vivo, we generated IRF1-transgenic/iNOS-knockout mice. IRF1 exerted profoundly detrimental effects in these mice; however, these effects were nullified by iNOS ablation. These data suggest the IRF1–iNOS axis as a crucial regulator of cardiac remodeling and that IRF1 could be a potent therapeutic target for cardiac remodeling.
Cardiovascular Research | 2014
Yan Zhang; Yu Liu; Xue-Hai Zhu; Xiao-Dong Zhang; Ding-Sheng Jiang; Zhou-Yan Bian; Xiao-Fei Zhang; Ke Chen; Xiang Wei; Lu Gao; Li-Hua Zhu; Qinglin Yang; Guo-Chang Fan; Wayne Bond Lau; Xin-Liang Ma; Hongliang Li
AIMS Dickkopf-3 (DKK3), a secreted protein in the Dickkopf family, is expressed in various tissues, including the heart, and has been shown to play an important role in tissue development. However, the biological function of DKK3 in the heart remains largely unexplored. This study aimed to examine the role of DKK3 in pathological cardiac hypertrophy. METHODS AND RESULTS We performed gain-of-function and loss-of-function studies using DKK3 cardiac-specific transgenic (TG) mice and DKK3 knockout (KO) mice (C57BL/6J background). Cardiac hypertrophy was induced by aortic banding. Cardiac hypertrophy was evaluated by echocardiographic, haemodynamic, pathological, and molecular analyses. Our results demonstrated that the loss of DKK3 exaggerated pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction, whereas the overexpression of DKK3 protected the heart against pressure overload-induced cardiac remodelling. These beneficial effects were associated with the inhibition of the ASK1-JNK/p38 (apoptosis signal-regulating kinase 1-c-Jun N-terminal kinase/p38) signalling cascade. Parallel in vitro experiments confirmed these in vivo observations. Co-immunoprecipitation experiments suggested that physical interactions occurred between DKK3 and ASK1. Moreover, rescue experiments indicated that, in DKK3 TG mice, the activation of ASK1 using a cardiac-specific conditional ASK1 transgene reduced the functionality of DKK3 in response to pressure overload; furthermore, the inactivation of ASK1 by dominant-negative ASK1 rescued pressure overload-induced cardiac abnormalities in DKK3 KO mice. CONCLUSION Taken together, our findings indicate that DKK3 acts as a cardioprotective regulator of pathological cardiac hypertrophy and that this function largely occurs via the regulation of ASK1-JNK/p38 signalling.
Basic Research in Cardiology | 2014
Yan Zhang; Xiaoxiong Liu; Zhi-Gang She; Ding-Sheng Jiang; Nian Wan; Hao Xia; Xue-Hai Zhu; Xiang Wei; Xiao-Dong Zhang; Hongliang Li
This study aimed to investigate whether interferon regulatory factor 9 (IRF9) is involved in the pathogenesis of myocardial ischemia–reperfusion (I/R) injury and to explore the underlying molecular mechanisms of this process. Cell death plays a major role in myocardial I/R injury. We recently determined the importance of IRF9 in coordinating molecular events in response to hypertrophic stress in cardiomyocytes. However, the roles of IRF9 in lethal myocardial injury remain to be elucidated. The involvement of IRF9 was assessed via functional assays in a mouse myocardial I/R injury model by genetic knockout and cardiomyocyte-specific transgenic overexpression of IRF9, and its effects on cardiomyocyte apoptosis and inflammation were further studied in vivo and in vitro. IRF9 was upregulated in human ischemic heart tissue and mouse hearts after I/R injury. Ablation of IRF9 protected the heart against I/R-induced cardiomyocyte death, development of inflammation, and loss of heart function. In contrast, cardiomyocyte-specific transgenic overexpression of IRF9 aggravated myocardial reperfusion injury and inflammation. IRF9 negatively regulated the Sirt1-p53 axis under I/R conditions in vivo and in vitro. Downregulation of Sirt1 expression and its downstream apoptosis-related signaling cascade, which results from I/R, was ameliorated by loss of IRF9 and exacerbated by overexpression of IRF9. Cardiomyocyte-specific deletion of Sirt1 abolished the protective effect of IRF9 knockout against I/R injury, which further indicated that IRF9 mediated myocardial reperfusion injury by modulating the Sirt1-p53 axis. Thus, IRF9 may be a novel therapeutic target for the prevention of I/R injury resulting from revascularization therapy after acute myocardial infarction (MI).
Journal of Hepatology | 2016
Junfei Hu; Xue-Hai Zhu; Xiao-Jing Zhang; Pi-Xiao Wang; Ran Zhang; Peng Zhang; Guang-Nian Zhao; Lu Gao; Xiao-Fei Zhang; Song Tian; Hongliang Li
BACKGROUND & AIMS The hallmarks of hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, include severe cell death and inflammatory responses that contribute to early graft failure and a higher incidence of organ rejection. Unfortunately, effective therapeutic strategies are limited. Tumor necrosis factor receptor (TNFR)-associated factor (TRAF) 3 transduces apoptosis and/or inflammation-related signaling pathways to regulate cell survival and cytokine production. However, the role of TRAF3 in hepatic I/R-induced liver damage remains unknown. METHODS Hepatocyte- or myeloid cell-specific TRAF3 knockdown or transgenic mice were subjected to an I/R model in vivo, and in vitro experiments were performed by treating primary hepatocytes from these mice with hypoxia/reoxygenation stimulation. The function of TRAF3 in I/R-induced liver damage and the potential underlying mechanisms were investigated through various phenotypic analyses and biological approaches. RESULTS Hepatocyte-specific, but not myeloid cell-specific, TRAF3 deficiency reduced cell death, inflammatory cell infiltration, and cytokine production in both in vivo and in vitro hepatic I/R models, whereas hepatic TRAF3 overexpression resulted in the opposite effects. Mechanistically, TRAF3 directly binds to TAK1, which enhances the activation of the downstream NF-κB and JNK pathways. Importantly, inhibition of TAK1 almost completely reversed the TRAF3 overexpression-mediated exacerbation of I/R injury. CONCLUSIONS TRAF3 is a novel hepatic I/R mediator that promotes liver damage and inflammation via TAK1-dependent activation of the JNK and NF-κB pathways. Inhibition of hepatic TRAF3 may represent a promising approach to protect the liver against I/R injury-related diseases.
Hypertension | 2015
Xue-Hai Zhu; Jing Fang; Ding-Sheng Jiang; Peng Zhang; Guang-Nian Zhao; Xueyong Zhu; Ling Yang; Xiang Wei; Hongliang Li
The adaptor protein Src homology 2-B3 (SH2B3), which belongs to a subfamily of Src homology 2 proteins, is a broad inhibitor of growth factors and cytokine signaling in hematopoietic cells. However, the role of SH2B3 in nonhematopoietic systems, particularly cardiomyocytes, has not been defined. In this study, we observed noticeable increase in SH2B3 protein expression during pathological cardiac remodeling in both humans and rodents. Follow-up in vitro gain- and loss-of-function studies suggested that SH2B3 promotes the cardiomyocyte hypertrophy response. Consistent with the cell phenotype, SH2B3 knockout (SH2B3−/−) mice exhibited attenuated cardiac remodeling with preserved cardiac function after chronic pressure overload. Conversely, cardiac-specific SH2B3 overexpression aggravated pressure overload–triggered cardiac hypertrophy, fibrosis, and dysfunction. Mechanistically, SH2B3 accelerates and exacerbates cardiac remodeling through the activation of focal adhesion kinase, which, in turn, activates the prohypertrophic downstream phosphoinositide 3-kinase-AKT-mammalian target of rapamycin/glycogen synthase kinase 3&bgr; signaling pathway. Finally, we generated a novel SH2B3 knockout rat line and further confirmed the protective effects of SH2B3 deficiency on cardiac remodeling across species. Collectively, our data indicate that SH2B3 functions as a novel and effective modulator of cardiac remodeling and failure.The adaptor protein Src homology 2-B3 (SH2B3), which belongs to a subfamily of Src homology 2 proteins, is a broad inhibitor of growth factors and cytokine signaling in hematopoietic cells. However, the role of SH2B3 in nonhematopoietic systems, particularly cardiomyocytes, has not been defined. In this study, we observed noticeable increase in SH2B3 protein expression during pathological cardiac remodeling in both humans and rodents. Follow-up in vitro gain- and loss-of-function studies suggested that SH2B3 promotes the cardiomyocyte hypertrophy response. Consistent with the cell phenotype, SH2B3 knockout (SH2B3−/−) mice exhibited attenuated cardiac remodeling with preserved cardiac function after chronic pressure overload. Conversely, cardiac-specific SH2B3 overexpression aggravated pressure overload–triggered cardiac hypertrophy, fibrosis, and dysfunction. Mechanistically, SH2B3 accelerates and exacerbates cardiac remodeling through the activation of focal adhesion kinase, which, in turn, activates the prohypertrophic downstream phosphoinositide 3-kinase-AKT-mammalian target of rapamycin/glycogen synthase kinase 3β signaling pathway. Finally, we generated a novel SH2B3 knockout rat line and further confirmed the protective effects of SH2B3 deficiency on cardiac remodeling across species. Collectively, our data indicate that SH2B3 functions as a novel and effective modulator of cardiac remodeling and failure. # Novelty and Significance {#article-title-43}
Nature Communications | 2016
Ke-Qiong Deng; Aibing Wang; Yan-Xiao Ji; Xiao-Jing Zhang; Jing Fang; Yan Zhang; Peng Zhang; Xi Jiang; Lu Gao; Xueyong Zhu; Yichao Zhao; Lingchen Gao; Qinglin Yang; Xue-Hai Zhu; Xiang Wei; Jun Pu; Hongliang Li
Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1 (TBK1)/AKT-dependent manner. Sike-deficient mice develop cardiac hypertrophy and heart failure, whereas Sike-overexpressing transgenic (Sike-TG) mice are protected from hypertrophic stimuli. Mechanistically, SIKE directly interacts with TBK1 to inhibit the TBK1-AKT signalling pathway, thereby achieving its anti-hypertrophic action. The suppression of cardiac remodelling by SIKE is further validated in rats and monkeys. Collectively, these findings identify SIKE as a negative regulator of cardiac remodelling in multiple animal species due to its inhibitory regulation of the TBK1/AKT axis, suggesting that SIKE may represent a therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Hypertension | 2016
Xue-Hai Zhu; Jing Fang; Jun Gong; Junhong Guo; Guang-Nian Zhao; Yan-Xiao Ji; Hong-Yun Liu; Xiang Wei; Hongliang Li
The calcium-responsive molecule, calcineurin, has been well characterized to play a causal role in pathological cardiac hypertrophy over the past decade. However, the intrinsic negative regulation of calcineurin signaling during the progression of cardiomyocyte hypertrophy remains enigmatic. Herein, we explored the role of EPI64C, a dual inhibitor of both Ras and calcineurin signaling during T-cell activation, in pressure overload–induced cardiac hypertrophy. We generated a cardiac-specific Epi64c conditional knockout mouse strain and showed that loss of Epi64c remarkably exacerbates pressure overload–induced cardiac hypertrophy. In contrast, EPI64C gain-of-function in cardiomyocyte-specific Epi64c transgenic mice exerts potent protective effects against cardiac hypertrophy. Mechanistically, the cardioprotective effects of EPI64C are largely attributed to the disrupted calcineurin signaling but are independent of its Ras suppressive capability. Molecular studies have indicated that the 406 to 446 C-terminal amino acids in EPI64C directly bind to the 287 to 337 amino acids in the catalytic domain of calcineurin, which is responsible for the EPI64C-mediated suppressive effects. We further extrapolated our studies to cynomolgus monkeys and showed that gene therapy based on lentivirus-mediated EPI64C overexpression in the monkey hearts blunted pressure overload–induced cardiac hypertrophy. Our study thus identified EPI64C as a novel negative regulator in cardiac hypertrophy by targeting calcineurin signaling and demonstrated the potential of gene therapy and drug development for treating cardiac hypertrophy.
Scientific Reports | 2017
Ding-Sheng Jiang; Hao-Long Zeng; Rui Li; Bo Huo; Yun-Shu Su; Jing Fang; Qing Yang; Ligang Liu; Min Hu; Cai Cheng; Xue-Hai Zhu; Xin Yi; Xiang Wei
There is ample evidence indicating that epicardial adipose tissue (EAT) volume and thickness is positively associated with coronary artery disease (CAD). However, the exact pathological changes in the human EAT after myocardial ischemia remains largely unclear. In the current study, we applied a comparative quantitative proteomics to elucidate the altered biological processes in the EAT of ischemic cardiomyopathy (ICM) patients. A total of 1649 proteins were successfully quantified in our study, among which 165 proteins were significantly changed (ratio <0.8 or >1.2 fold and p < 0.05 in both repetitions) in EAT of ICM individuals. Gene ontology (GO) enrichment analysis revealed that cardiac structure and cellular metabolism were over-represented among these regulated proteins. The hypertrophic cardiomyopathy, adrenergic signaling in cardiomyocytes, extracellular matrix (ECM)-receptor interaction, phagosome, Glycolysis/Gluconeogenesis, and PPAR signaling pathway were highlighted by the KEGG PATHWAY analysis. More importantly, we found that the proteins responsible for extracellular matrix organization were dramatically increased in EAT of ICM patients. In addition, the picrosirius red (PSR) staining results showed that the collagen fiber content was prominently increased, which indicated the EAT of ICM individuals underwent extracellular matrix remodeling and ERK1/2 activation maybe responsible for these pathological changes partially.
Hypertension | 2017
Jing Fang; Tianyu Li; Xue-Hai Zhu; Ke-Qiong Deng; Yan-Xiao Ji; Chun Fang; Xiao-Jing Zhang; Junhong Guo; Peng Zhang; Hongliang Li; Xiang Wei
The transcription factor NFAT1 (nuclear factor of activated T-cells 1), with the aid of transcriptional coactivators, has been recognized for its necessity and sufficiency to drive pathological cardiac hypertrophy. However, how the transcriptional activity of NFAT1 in terms of cardiac hypertrophy is controlled at the transcriptional level has not been well defined. Herein, we showed that a cardiac-enriched protein IRF2BP2 (interferon regulatory factor-2 binding protein 2) was further upregulated in both human and mouse hypertrophied myocardium and negatively regulated cardiomyocyte hypertrophic response in vitro. By generating cardiomyocyte-specific Irf2bp2 knockout and Irf2bp2-transgenic mouse strains, our in vivo experiments showed that, whereas IRF2BP2 loss-of-function exacerbated both aortic banding- and angiotensin II infusion-induced cardiac hypertrophic response, IRF2BP2 overexpression exerted a strong protective effect against these maladaptive processes. Particularly, IRF2BP2 directly interacted with the C-terminal transactivation domain of NFAT1 by competing with myocyte enhancer factor-2C and disturbing their transcriptional synergism, thereby impeding NFAT1-transactivated hypertrophic transcriptome. As a result, the devastating effect of Irf2bp2 deficiency on cardiac hypertrophy was largely rescued by NFAT1 blockage. Our study, thus, defined IRF2BP2 as a novel negative regulator in controlling pathological cardiac hypertrophy at the transcriptional level.