Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuebin Qin is active.

Publication


Featured researches published by Xuebin Qin.


Circulation Research | 2016

Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells

Hang Xi; Yuling Zhang; Yanjie Xu; William Y. Yang; Xiaohua Jiang; Xiaojin Sha; Xiaoshu Cheng; Jingfeng Wang; Xuebin Qin; Jun Yu; Yong Ji; Xiaofeng Yang; Hong Wang

RATIONALE Endothelial injury is an initial mechanism mediating cardiovascular disease. OBJECTIVE Here, we investigated the effect of hyperhomocysteinemia on programed cell death in endothelial cells (EC). METHODS AND RESULTS We established a novel flow-cytometric gating method to define pyrotosis (Annexin V(-)/Propidium iodide(+)). In cultured human EC, we found that: (1) homocysteine and lipopolysaccharide individually and synergistically induced inflammatory pyroptotic and noninflammatory apoptotic cell death; (2) homocysteine/lipopolysaccharide induced caspase-1 activation before caspase-8, caspase-9, and caspase-3 activations; (3) caspase-1/caspase-3 inhibitors rescued homocysteine/lipopolysaccharide-induced pyroptosis/apoptosis, but caspase-8/caspase-9 inhibitors had differential rescue effect; (4) homocysteine/lipopolysaccharide-induced nucleotide-binding oligomerization domain, and leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) protein caused NLRP3-containing inflammasome assembly, caspase-1 activation, and interleukin (IL)-1β cleavage/activation; (5) homocysteine/lipopolysaccharide elevated intracellular reactive oxygen species, (6) intracellular oxidative gradient determined cell death destiny as intermediate intracellular reactive oxygen species levels are associated with pyroptosis, whereas high reactive oxygen species corresponded to apoptosis; (7) homocysteine/lipopolysaccharide induced mitochondrial membrane potential collapse and cytochrome-c release, and increased B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio which were attenuated by antioxidants and caspase-1 inhibitor; and (8) antioxidants extracellular superoxide dismutase and catalase prevented homocysteine/lipopolysaccharide -induced caspase-1 activation, mitochondrial dysfunction, and pyroptosis/apoptosis. In cystathionine β-synthase-deficient (Cbs(-/-)) mice, severe hyperhomocysteinemia-induced caspase-1 activation in isolated lung EC and caspase-1 expression in aortic endothelium, and elevated aortic caspase-1, caspase-9 protein/activity and B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio in Cbs(-/-) aorta and human umbilical vein endothelial cells. Finally, homocysteine-induced DNA fragmentation was reversed in caspase-1(-/-) EC. Hyperhomocysteinemia-induced aortic endothelial dysfunction was rescued in caspase-1(-/-) and NLRP3(-/-) mice. CONCLUSIONS Hyperhomocysteinemia preferentially induces EC pyroptosis via caspase-1-dependent inflammasome activation leading to endothelial dysfunction. We termed caspase-1 responsive pyroptosis and apoptosis as pyrop-apoptosis.


American Journal of Physiology-renal Physiology | 2009

Anaphylatoxin C5a contributes to the pathogenesis of cisplatin-induced nephrotoxicity

Hao Pan; Zhoujun Shen; Partha Mukhopadhyay; Hua Wang; Pál Pacher; Xuebin Qin; Bin Gao

Nephrotoxicity is a common complication of cisplatin chemotherapy that limits its clinical use; however, the mechanisms underlying cisplatin-mediated nephrotoxicity are not fully understood. In this study, we investigated the role of anaphylatoxin C5a in the pathogenesis of cisplatin-mediated nephrotoxicity. Our data show that cisplatin-induced renal injury is significantly reduced in C5- or C5aR-deficient mice. However, pretreatment with C5 or C5a restores sensitivity to cisplatin-induced nephrotoxicity in C5-deficient mice. In wild-type mice, administration of cisplatin triggers the increased renal expression of multiple cytokines and caspases. This induction is diminished in C5-deficient mice, which is restored by pretreatment with C5 or C5a proteins. Interestingly, renal injury induced by cisplatin is similar between wild-type and CD59ab double knockout mice, and the formation of membrane attack complexes (MACs) by cisplatin in the kidney is diminished in C5-deficient mice, but not in C5aR-deficient mice. In conclusion, our findings suggest that C5a plays an important role in the pathogenesis of cisplatin nephrotoxicity. Likely, C5a binds to C5aR, leading to induction of proinflammatory cytokines and inflammation. The formation of MACs does not appear to contribute to the nephrotoxicity of cisplatin based on our study results.


Journal of Biological Chemistry | 2015

Inhibition of Caspase-1 Activation in Endothelial Cells Improves Angiogenesis: A NOVEL THERAPEUTIC POTENTIAL FOR ISCHEMIA.

Jahaira Lopez-Pastrana; Lucas M Ferrer; Ya-Feng Li; Xinyu Xiong; Hang Xi; Ramon Cueto; Jun Nelson; Xiaojin Sha; Xinyuan Li; Ann L Cannella; P. I. Imoukhuede; Xuebin Qin; Eric T. Choi; Hong Tian Wang; Xiaofeng Yang

Background: The interplay between dyslipidemia-induced inflammation and angiogenesis remains poorly understood. Results: Inhibition of caspase-1 improves VEGFR-2 signaling, tube formation, and blood perfusion in ischemic tissues. Conclusion: The suppression of caspase-1 improves angiogenesis and ischemia prognosis. Significance: Caspase-1 suppression is a novel therapeutic target for improvement of angiogenesis and ischemia under inflammatory environments. Deficient angiogenesis may contribute to worsen the prognosis of myocardial ischemia, peripheral arterial disease, ischemic stroke, etc. Dyslipidemic and inflammatory environments attenuate endothelial cell (EC) proliferation and angiogenesis, worsening the prognosis of ischemia. Under these dyslipidemic and inflammatory environments, EC-caspase-1 becomes activated and induces inflammatory cell death that is defined as pyroptosis. However, the underlying mechanism that correlates caspase-1 activation with angiogenic impairment and the prognosis of ischemia remains poorly defined. By using flow cytometric analysis, enzyme and receptor inhibitors, and hind limb ischemia model in caspase-1 knock-out (KO) mice, we examined our novel hypothesis, i.e. inhibition of caspase-1 in ECs under dyslipidemic and inflammatory environments attenuates EC pyroptosis, improves EC survival mediated by vascular endothelial growth factor receptor 2 (VEGFR-2), angiogenesis, and the prognosis of ischemia. We have made the following findings. Proatherogenic lipids induce higher caspase-1 activation in larger sizes of human aortic endothelial cells (HAECs) than in smaller sizes of HAECs. Proatherogenic lipids increase pyroptosis significantly more in smaller sizes of HAECs than in larger sizes of the cells. VEGFR-2 inhibition increases caspase-1 activation in HAECs induced by lysophosphatidylcholine treatment. Caspase-1 activation inhibits VEGFR-2 expression. Caspase-1 inhibition improves the tube formation of lysophosphatidylcholine-treated HAECs. Finally, caspase-1 depletion improves angiogenesis and blood flow in mouse hind limb ischemic tissues. Our results have demonstrated for the first time that inhibition of proatherogenic caspase-1 activation in ECs improves angiogenesis and the prognosis of ischemia.


Atherosclerosis | 2014

Targeted mouse complement inhibitor CR2-Crry protects against the development of atherosclerosis in mice

Fengming Liu; Lin Wu; Gongxiong Wu; Chun Wang; Lining Zhang; Stephen Tomlinson; Xuebin Qin

OBJECTIVE Atherosclerosis is a chronic inflammatory and immune vascular disease, and clinical and experimental evidence has indicated an important role of complement activation products, including the terminal membrane attack complex (MAC), in atherogenesis. Here, we investigated whether complement inhibition represents a potential therapeutic strategy to treat/prevent atherogenesis using CR2-Crry, a recently described complement inhibitor that specifically targets to sites of C3 activation. METHODS AND RESULTS Previous studies demonstrated that loss of CD59 (a membrane inhibitor of MAC formation) accelerated atherogenesis in Apoe deficient (Apoe(-/-)) mice. Here, both CD59 sufficient and CD59 deficient mice in an Apoe deficient background (namely, mCd59 ab(+/+)/Apoe(-/-) and mCd59 ab(-/-)/Apoe(-/-)) were treated with CR2-Crry for 4 and 2 months respectively, while maintained on a high fat diet. Compared to control treatment, CR2-Crry treatment resulted in significantly fewer atherosclerotic lesions in the aorta and aortic root, and inhibited the accelerated atherogenesis seen in mCd59 ab(+/+)/Apoe(-/-) and mCd59 ab(-/-)/Apoe(-/-) mice. CR2-Crry treatment also resulted in significantly reduced C3 and MAC deposition in the vasculature of both mice, as well as a significant reduction in the number of infiltrating macrophages and T cells. CONCLUSION The data demonstrate the therapeutic potential of targeted complement inhibition.


Journal of Cardiovascular Translational Research | 2016

Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets—“Sand Out and Gold Stays”

Ying Shao; Valeria Chernaya; Candice Johnson; William Y. Yang; Ramon Cueto; Xiaojin Sha; Yi Zhang; Xuebin Qin; Jianxin Sun; Eric T. Choi; Hong Wang; Xiao-Feng Yang

To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of “Sand out and Gold stays,” where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.


Journal of Clinical Investigation | 2016

Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration

Dechun Feng; Shen Dai; Fengming Liu; Yosuke Ohtake; Zhou Zhou; Hua Wang; Yonggang Zhang; Alison Kearns; Xiao Peng; Faliang Zhu; Umar Hayat; Man Li; Yong He; Ming-Jiang Xu; Chunling Zhao; Min Cheng; Lining Zhang; Hong Wang; Xiaofeng Yang; Cynthia Ju; Elizabeth C. Bryda; Jennifer Gordon; Kamel Khalili; Wenhui Hu; Shuxin Li; Xuebin Qin; Bin Gao

Cell ablation is a powerful tool for studying cell lineage and/or function; however, current cell-ablation models have limitations. Intermedilysin (ILY), a cytolytic pore-forming toxin that is secreted by Streptococcus intermedius, lyses human cells exclusively by binding to the human complement regulator CD59 (hCD59), but does not react with CD59 from nonprimates. Here, we took advantage of this feature of ILY and developed a model of conditional and targeted cell ablation by generating floxed STOP-CD59 knockin mice (ihCD59), in which expression of human CD59 only occurs after Cre-mediated recombination. The administration of ILY to ihCD59+ mice crossed with various Cre-driver lines resulted in the rapid and specific ablation of immune, epithelial, or neural cells without off-target effects. ILY had a large pharmacological window, which allowed us to perform dose-dependent studies. Finally, the ILY/ihCD59-mediated cell-ablation method was tested in several disease models to study immune cell functionalities, hepatocyte and/or biliary epithelial damage and regeneration, and neural cell damage. Together, the results of this study demonstrate the utility of the ihCD59 mouse model for studying the effects of cell ablation in specific organ systems in a variety of developmental and disease states.


Frontiers in Physiology | 2018

DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks.

Huihong Zeng; Gayani Nanayakkara; Ying Shao; Hangfei Fu; Yu Sun; Ramon Cueto; William Y. Yang; Qian Yang; Haitao Sheng; Na Wu; Luqiao Wang; Wuping Yang; Hongping Chen; Lijian Shao; Jianxin Sun; Xuebin Qin; Joon Y. Park; Konstantinos Drosatos; Eric T. Choi; Qingxian Zhu; Hong Wang; Xiaofeng Yang

Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.


Physiological Genomics | 2016

Rapid conditional targeted ablation model for hemolytic anemia in the rat

Marina McCoy Hanson; Fengming Liu; Shen Dai; Alison Kearns; Xuebin Qin; Elizabeth C. Bryda

Effective methods for cell ablation are important tools for examining the anatomical, functional, and behavioral consequences of selective loss of specific cell types in animal models. We have developed an ablation system based on creating genetically modified animals that express human CD59 (hCD59), a membrane receptor, and administering intermedilysin (ILY), a toxin produced by Streptococcus intermedius, which binds specifically to hCD59 to induce cell lysis. As proof-of-concept in the rat, we generated an anemia model, SD-Tg(CD59-HBA1)Bryd, which expresses hCD59 on erythrocytes. Hemolysis is a common complication of inherited or acquired blood disorders, which can result in cardiovascular compromise and death. A rat model that can replicate hemolysis through specific ablation of erythrocytes would allow further study of disease and novel treatments. In vitro, complete lysis of erythrocytes expressing hCD59 was observed at and above 250 pM ILY, while no lysis was observed in wild-type erythrocytes at any ILY concentration (8-1,000 pM). In vivo, ILY intravenous injection (100 ng/g body wt) dramatically reduced the hematocrit within 10 min, with a mean hematocrit reduction of 43% compared with 1.4% in the saline control group. Rats injected with ILY at 500 ng/g intraperitoneally developed gross signs of anemia. Histopathology confirmed anemia and revealed hepatic necrosis, with microthrombi present. These studies validate the hCD59-ILY cell ablation technology in the rat and provide the scientific community with a new rapid conditional targeted ablation model for hemolytic anemia and hemolysis-associated sequelae.


Archive | 2011

The Role of Complement in the Pathogenesis of Artery Aneurysms

Fengming Liu; Annie Qin; Lining Zhang; Xuebin Qin

Aneurysm is an abnormal widening or ballooning of a portion of an artery due to weakness in the wall of the blood vessel. Although venous aneurysms do occur, arterial aneurysms are much more common and severe than venous aneurysms. Aneurysmal degeneration of the abdominal aortic and iliac arteries is a common and frequently lethal age-related disease process (Baxter et al., 2008; Weintraub, 2009). Arterial aneurysm is a potentially lethal vascular disorder, much more common in older men with estimates of prevalence ranging up to 10 percent (Thompson et al., 2002). Death from a ruptured aneurysm accounts for about 1 percent of all the deaths in the Western world (Collin et al., 1988). Extensive evidence indicates that mediators of immunity and inflammation participate in the development of aneurysm formation (Duftner et al., 2006; Shimizu et al., 2006). However, the pathogenesis of the aneurysm formation and rupture remains unclear. Recent results obtained from clinical and experimental studies suggest that complement, an important mediator for immune and inflammatory responses may contribute to the pathogenesis of artery aneurysms. Here, we will extensively review the potential roles of complement in artery aneurysm formation and rupture.


Molecular Therapy | 2017

In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models

Chaoran Yin; Ting Zhang; Xiying Qu; Yonggang Zhang; Raj Putatunda; Xiao Xiao; Fang Li; Weidong Xiao; Huaqing Zhao; Shen Dai; Xuebin Qin; Xianming Mo; Won Bin Young; Kamel Khalili; Wenhui Hu

Collaboration


Dive into the Xuebin Qin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofeng Yang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge