Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuegong Lei is active.

Publication


Featured researches published by Xuegong Lei.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Quantum rotation of ortho and para-water encapsulated in a fullerene cage

C. Beduz; Marina Carravetta; Judy Y.-C. Chen; Maria Concistrè; Mark Denning; Michael Frunzi; A.J. Horsewill; Ole G. Johannessen; Ronald G. Lawler; Xuegong Lei; Malcolm H. Levitt; Yongjun Li; Salvatore Mamone; Yasujiro Murata; Urmas Nagel; Tomoko Nishida; Jacques Ollivier; S. Rols; Toomas Room; Riddhiman Sarkar; Nicholas J. Turro; Y. Yang

Inelastic neutron scattering, far-infrared spectroscopy, and cryogenic nuclear magnetic resonance are used to investigate the quantized rotation and ortho–para conversion of single water molecules trapped inside closed fullerene cages. The existence of metastable ortho-water molecules is demonstrated, and the interconversion of ortho-and para-water spin isomers is tracked in real time. Our investigation reveals that the ground state of encapsulated ortho water has a lifted degeneracy, associated with symmetry-breaking of the water environment.


Journal of Chemical Physics | 2011

Infrared spectroscopy of endohedral HD and D2 in C60

Min Ge; Urmas Nagel; D. Hüvonen; Toomas Room; Salvatore Mamone; Malcolm H. Levitt; Marina Carravetta; Yasujiro Murata; Koichi Komatsu; Xuegong Lei; Nicholas J. Turro

We report on the dynamics of two hydrogen isotopomers, D(2) and HD, trapped in the molecular cages of a fullerene C(60) molecule. We measured the infrared spectra and analyzed them using a spherical potential for a vibrating rotor. The potential, vibration-rotation Hamiltonian, and dipole moment parameters are compared with previously studied H(2)@C(60) parameters [M. Ge, U. Nagel, D. Hüvonen, T. Rõõm, S. Mamone, M. H. Levitt, M. Carravetta, Y. Murata, K. Komatsu, J. Y.-C. Chen, and N. J. Turro, J. Chem. Phys. 134, 054507 (2011)]. The isotropic part of the potential is similar for all three isotopomers. In HD@C(60), we observe mixing of the rotational states and an interference effect of the dipole moment terms due to the displacement of the HD rotation center from the fullerene cage center.


Journal of Physical Chemistry A | 2009

Fundamental Optical Properties of Linear and Cyclic Alkanes: VUV Absorbance and Index of Refraction

Elizabeth A. Costner; Brian K. Long; Carlos Navar; Steffen Jockusch; Xuegong Lei; Paul Zimmerman; Alan Campion; Nicholas J. Turro; C. Grant Willson

VUV absorbance and index of refraction data for a series of linear and cyclic alkanes have been collected in order to understand the relationship between the electronic excitation wavelength (or absorbance edge), index of refraction, and molecular structure. The absorbance edge and index for a homologous series of both linear and cyclic alkanes increase with increasing carbon number. The optical properties of complex cycloalkanes do not vary predictably with increasing carbon number but instead depend on variations in the hydrocarbon structure in addition to hydrocarbon size. An understanding of the fundamental optical properties of this class of compounds is directly applicable to the identification of a high index and low-absorbance fluid for 193 nm immersion lithography.


Journal of the American Chemical Society | 2010

A Magnetic Switch for Spin-Catalyzed Interconversion of Nuclear Spin Isomers

Yongjun Li; Xuegong Lei; Steffen Jockusch; Judy Y.-C. Chen; Michael Frunzi; Jeremiah A. Johnson; Ronald G. Lawler; Yasujiro Murata; Michihisa Murata; Koichi Komatsu; Nicholas J. Turro

The interconversion of ortho-hydrogen (oH(2)) and para-hydrogen (pH(2)), the two nuclear spin isomers of dihydrogen, requires a paramagnetic spin catalyst such as a nitroxide. We report the design and demonstration of spin catalysis of the interconversion of oH(2) and pH(2) incarcerated in an endofullerene based on a reversible nitroxide/hydroxylamine system. The system is an example of a reversible magnetic spin catalysis switch that can increase the rate of interconversion of the nuclear spin isomers of H(2) by a factor of approximately 10(4).


Journal of Chemical Physics | 2014

Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

Salvatore Mamone; Maria Concistrè; Elisa Carignani; Benno Meier; Andrea Krachmalnicoff; Ole G. Johannessen; Xuegong Lei; Yongjun Li; Mark Denning; Marina Carravetta; Kelvin S. K. Goh; A.J. Horsewill; Richard J. Whitby; Malcolm H. Levitt

The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by (13)C nuclei present in the cages.


Philosophical Transactions of the Royal Society A | 2013

Quantum rotation and translation of hydrogen molecules encapsulated inside C60: temperature dependence of inelastic neutron scattering spectra

A.J. Horsewill; Kelvin S. K. Goh; S. Rols; Jacques Ollivier; Mark R. Johnson; Malcolm H. Levitt; Marina Carravetta; Salvatore Mamone; Yasujiro Murata; Judy Y.-C. Chen; Jeremiah A. Johnson; Xuegong Lei; Nicholas J. Turro

The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.


Journal of Colloid and Interface Science | 2008

EPR characterization of gadolinium(III)-containing-PAMAM-dendrimers in the absence and in the presence of paramagnetic probes

Xuegong Lei; Steffen Jockusch; Nicholas J. Turro; Donald A. Tomalia; M. Francesca Ottaviani

Gd(III)-containing dendrimers are promising contrast agents for magnetic resonance imaging (MRI). An important issue in the effectiveness and toxicity of a Gd(III) based MRI contrast agent is knowledge of the relative locations and concentrations of Gd(III) in dendrimer drug delivery hosts. In order to provide experimental information on this issue, we have investigated the electron paramagnetic resonance (EPR) of a stable Gd(III) complex with diethylenetriaminepentaacetic acid (DTPA) in various polyammidoamine (PAMAM) dendrimers as a function of dendrimer generation (G2, G4, and G6), dendrimer core (ethylenediamine = EDA, and cystamine = cys), and dendrimer surface functionality (NH(2), 5-oxo-3-pyrrolidinecarboxylic acid methyl ester = pyr, and tris(hydroxymethyl) methylamine = tris). The dendrimer systems were investigated in the presence and absence of paramagnetic probes, that is, Cu(II) and nitroxide radicals (4-(trimethylammonium and dodecyl-dimethylammonium) 2,2,6,6-tetramethylpiperidine 1-oxyl bromide = CAT1 and CAT12, respectively). The analysis of the EPR spectra revealed anisotropic locations of Gd-DTPA inside the dendrimer. Computer analysis of the EPR spectra of the probes identified the interactions of the Gd-dendrimers with ions and organic molecules. The interaction between the probes and the dendrimer internal and external surface depends on the type of core, the composition of the external surface and the generation of the dendrimer. The negatively charged Gd-DTPA complex attracts the positively charged species and this provokes spin-spin interactions between Gd and the probes, which increases with a decrease in generation, mainly from G6 to G4, and with an increase in both the Gd-dendrimer concentration and the probe concentration. The cys core increases the internal volume and decreases the packing of the branches.


Journal of Physical Chemistry Letters | 2012

Comparison of Nuclear Spin Relaxation of H2O@C60 and H2@C60 and Their Nitroxide Derivatives.

Yongjun Li; Judy Y.-C. Chen; Xuegong Lei; Ronald G. Lawler; Yasujiro Murata; Koichi Komatsu; Nicholas J. Turro

The successful synthesis of H2O@C60 makes possible the study of magnetic interactions of an isolated water molecule in a geometrically well-defined hydrophobic environment. Comparisons are made between the T1 values of H2O@C60 and the previously studied H2@C60 and their nitroxide derivatives. The value of T1 is approximately six times longer for H2O@C60 than for H2@C60 at room temperature, is independent of solvent viscosity or polarity, and increases monotonically with decreasing temperature, implying that T1 is dominated by the spin-rotation interaction. Paramagnetic nitroxides, either attached covalently to the C60 cage or added to the medium, produce strikingly similar T1 enhancements for H2O@C60 and H2@C60 that are consistent with through-space interaction between the internal nuclear spins and the external electron spin. This indicates that it should be possible to apply to the endo-H2O molecule the same methodologies for manipulating the ortho and para spin isomers that have proven successful for H2@C60.


Chemical Physics Letters | 1985

External magnetic field dependent influence of lanthanide ions on the chemistry of radical pairs in micelles

Nicholas J. Turro; Xuegong Lei; Ian R. Gould; Matthew B. Zimmt

Abstract The behaviour of geminate triplet benzyl radicals pairs in anionic micelles has been investigated as a function of added lanthanide ions (Ln 3+ ) in the presence and absence of a laboratory field. Although the percent of geminate radical coupling is insensitive to the nature of added Ln 3+ in the absence of a laboratory field (except for a salt effect), in the presence of a laboratory field the percent cage is significantly affected by paramagnetic Ln 3+ ions, but not by diamagnetic Ln 3+ ions or by Eu 3+ .


Tetrahedron Letters | 1986

Photochemistry of large ring 2-phenylcycloalkanones and 2,n-diphenylcycloalkanones

Xuegong Lei; Charles Doubleday; Nicholas J. Turro

Abstract Photolysis of the title compounds (n=10, 11, 12, 15) yields mainly cyclophanes. The product distribution depends on temperature and solvent.

Collaboration


Dive into the Xuegong Lei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge