Xuehong Lu
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuehong Lu.
ACS Nano | 2011
Shengyan Yin; Yanyan Zhang; Junhua Kong; Changji Zou; Chang Ming Li; Xuehong Lu; Jan Ma; Freddy Yin Chiang Boey; Xiaodong Chen
The electrodes with the hierarchical nanoarchitectures could offer a huge increase in energy storage capacity. However, the ability to achieve such hierarchical architectures on a multiple scale still has remained a great challenge. In this paper, we report a scalable self-assembly strategy to create bioinspired hierarchical structures composed of functionalized graphene sheets to work as anodes of lithium-ion batteries. The resulting electrodes with novel multilevel architectures simultaneously optimize ion transport and capacity, leading to a high performance of reversible capacity of up to 1600 mAh/g, and 1150 mAh/g after 50 cycles. Importantly, the process to fabricate such hierarchical structures is facile, low-cost, green, and scalable, providing a universal approach for the rational design and engineering of electrode materials with enhanced performance, and it may have utility in various applications, including biological scaffold, catalysis, and sensors.
Advanced Materials | 2013
Hengchang Bi; Zongyou Yin; Xiehong Cao; Xiao Xie; Chaoliang Tan; Xiao Huang; Bo Chen; Fangtao Chen; Qingling Yang; Xinyang Bu; Xuehong Lu; Litao Sun; Hua Zhang
Twisted carbon fiber (TCF) aerogel with good selective sorption is produced in large scale by using raw cotton as the precursor. TCF aerogel shows highly efficient sorption of organic liquids (pump oil: up to 192 times its own weight; chloroform: up to 115 times its own weight). Moreover, it could be regenerated many times without decrease of sorption capacity by distillation, combustion or squeezing, which depends on the type of pollutants.
Journal of Materials Chemistry | 2012
Xu Wang; Wan Shuang Liu; Xuehong Lu; Pooi See Lee
In this contribution, we report a facile preparation method of nickel cobalt oxide–reduced graphite oxide (NiCo2O4–rGO) composite material. A fast Faradic process has been realized by sodium dodecyl sulfate (SDS)-induced ultrasmall NiCo2O4 nanocrystals on rGO. As a result, this composite material gives a high specific capacitance of 1222 F g−1 at 0.5 A g−1 and 768 F g−1 at 40 A g−1, showing an outstanding rate capability. An asymmetric supercapacitor device with high energy and power densities has been successfully assembled based on NiCo2O4–rGO composite material and activated carbon. The optimized device shows a high energy density of 23.32 Wh kg−1 at a power density of 324.9 W kg−1. In addition, this asymmetric device shows good stability towards multistage current charge–discharge cycles.
Journal of Materials Chemistry | 2011
Fuke Wang; Xuehong Lu; Chaobin He
Polyhedral Oligomeric Silsesquioxane (POSS) has attracted considerable interest in materials science due to its well-defined nano-scale organic–inorganic structure, which makes it an ideal building block for constructing nano-structured hybrid materials and nanocomposites. In this article, we highlight some recent developments in applications of POSS materials: 1) improving thermal and mechanical properties of polymers through incorporation of POSS into polymer matrices to form nanocomposites; 2) using POSS as a building block for design and synthesis of POSS-containing organic semiconductor materials to achieve high photo-luminescence/electron luminescence quantum efficiency in organic light emitting diodes and enhanced performance in electrochromatic devices; 3) exploiting POSS as a hydrophobic unit to develop amphiphilic polymers for drug/gene delivery and formation of hydrogels. A future direction for the development of POSS-containing materials is also proposed for applications in organic photovoltaic and other high-performance materials.
ACS Applied Materials & Interfaces | 2011
Liping Yang; Si Lei Phua; Jun Kai Herman Teo; Cher Ling Toh; Soo Khim Lau; Jan Ma; Xuehong Lu
A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.
Small | 2013
Jian Yan; Liping Yang; Meng-Fang Lin; Jan Ma; Xuehong Lu; Pooi See Lee
In this work, monodisperse polydopamine (PDA) spheres with tunable diameters have been synthesized through a facile and low cost method using a deionized water and alcohol mixed solvent. The PDA spheres possess surface functional groups (-OH, -NH(2)), exhibiting an extraordinary versatile active nature. It is demonstrated that the PDA spheres could serve as an active template for the convenient synthesis of various nanostructures, e.g., MnO(2) hollow spheres or PDA/Fe(3)O(4) and PDA/Ag core/shell nanostructures. No surface modification or special treatment is required for the synthesis of these nanostructures, which makes the fabrication process simple and very convenient. The novel application of PDA/Fe(3)O(4) spheres as fillers in nanocomposites for high-performance capacitors is demonstrated, indicating a promising practicality. The PDA spheres provide a new general platform not only for the facile assembly of nanostructures but also a green synthetic template for practical applications.
ACS Applied Materials & Interfaces | 2014
Chenyang Zhao; Junhua Kong; Xiayin Yao; Xiaosheng Tang; Yuliang Dong; Si Lei Phua; Xuehong Lu
In this work, highly flexible MoS2-based lithium-ion battery anodes composed of disordered thin MoS2 nanoflakes encapsulated in amorphous carbon nanofibrous mats were fabricated for the first time through hydrothermal synthesis of graphene-like MoS2, followed by electrospinning and carbonization. X-ray diffraction as well as scanning and transmission electron microscopic studies show that the as-synthesized MoS2 nanoflakes have a thickness of about 5 nm with an expanded interlayer spacing, and their structure and morphology are well-retained after the electrospinning and carbonization. At relatively low MoS2 contents, the nanoflakes are dispersed and well-embedded in the carbon nanofibers. Consequently, excellent electrochemical performance, including good cyclability and high rate capacity, was achieved with the hybrid nanofibrous mat at the MoS2 content of 47%, which may be attributed to the fine thickness and multilayered structure of the MoS2 sheets with an expanded interlayer spacing, the good charge conduction provided by the high-aspect-ratio carbon nanofibers, and the robustness of the nanofibrous mat.
Langmuir | 2008
Shu Huang; Wu Aik Yee; Wuiwui Chauhari Tjiu; Ye Liu; Masaya Kotaki; Yin Chiang Freddy Boey; Jan Ma; Tianxi Liu; Xuehong Lu
Polyvinylidene difluoride (PVDF) solutions containing a very low concentration of single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) of similar surface chemistry, respectively, were electrospun, and the nanofibers formed were collected using a modified rotating disk collector. The polymorphic behavior and crystal orientation of the nanofibers were studied using wide-angle X-ray diffraction and infrared spectroscopy, while the nanotube alignment and interfacial interactions in the nanofibers were probed by transmission electron microscopy and Raman spectroscopy. It is shown that the interfacial interaction between the SWCNTs and PVDF and the extensional force experienced by the nanofibers in the electrospinning and collection processes can work synergistically to induce highly oriented beta-form crystallites extensively. In contrast, the MWCNTs could not be well aligned along the nanofiber axis, which leads to a lower degree of crystal orientation.
Small | 2014
Hengchang Bi; Xiao Huang; Xing Wu; Xiehong Cao; Chaoliang Tan; Zongyou Yin; Xuehong Lu; Litao Sun; Hua Zhang
A carbon microbelt (CMB) aerogel with good selective sorption can be produced in large scale by using waste paper as a precursor. The CMB aerogel shows highly efficient sorption of organic liquids (pump oil: up to 188 times its own weight; chloroform: up to 151 times its own weight). Moreover, the CMB aerogel can be regenerated many times without decrease of sorption capacity by distillation, or squeezing depending on the type of pollutants.
Nanotechnology | 2012
Yuefan Wei; Lin Ke; Junhua Kong; Hong Liu; Zhihui Jiao; Xuehong Lu; Hejun Du; Xiao Wei Sun
Zinc oxide (ZnO) nanorods coated with silver (Ag) film on a polyethylene terephthalate (PET)flexible substrate were used as the photo anode for water splitting. The hybrid nanostructures were prepared via low-temperature hydrothermal growth and electron beam evaporation. The effects of plasmonic enhanced absorption, surface recombination inhibition and improved charge transport are investigated by varying the Ag thickness. Light trapping and absorption enhancement are further studied by optimizing the curvature of the PET substrates. The maximum short circuit current density (JSC, 0.616 mA cm -2) and the photoelectron conversion efficiency (PCE, 0.81%) are achieved with an optimized Ag film thickness of 10 nm and substrate bending radius of 6.0 mm. The maximum JSC and PCE are seven times and ten times, respectively, higher than those of the bare ZnO nanorods on flexible substrates without bending. The overall PEC performance improvement is attributed to the plasmonic effects induced by Ag film and improved charge transport due to inhibition of ZnO surface charge recombination. Enhanced light trapping (harvesting) induced by bending the PET substrates further improved the overall efficiency.