Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ehua Xu is active.

Publication


Featured researches published by ehua Xu.


Nature Communications | 2013

Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis

Hongyan Li; Lei Yang; Hui Fu; Jianshe Yan; Ying Wang; Hua Guo; Xishan Hao; Xuehua Xu; Tian Jin; Ning Zhang

The chemokine CXCL12 and its G-protein-coupled receptor CXCR4 control the migration, invasiveness and metastasis of breast cancer cells. Binding of CXCL12 to CXCR4 triggers activation of heterotrimeric Gi proteins that regulate actin polymerization and migration. However, the pathways linking chemokine G-protein-coupled receptor/Gi signalling to actin polymerization and cancer cell migration are not known. Here we show that CXCL12 stimulation promotes interaction between Gαi2 and ELMO1. Gi signalling and ELMO1 are both required for CXCL12-mediated actin polymerization, migration and invasion of breast cancer cells. CXCL12 triggers a Gαi2-dependent membrane translocation of ELMO1, which associates with Dock180 to activate small G-proteins Rac1 and Rac2. In vivo, ELMO1 expression is associated with lymph node and distant metastasis, and knocking down ELMO1 impairs metastasis to the lung. Our findings indicate that a chemokine-controlled pathway, consisting of Gαi2, ELMO1/Dock180, Rac1 and Rac2, regulates the actin cytoskeleton during breast cancer metastasis.


Developmental Cell | 2012

A Gβγ Effector, ElmoE, Transduces GPCR Signaling to the Actin Network during Chemotaxis

Jianshe Yan; Vassil Mihaylov; Xuehua Xu; Joseph A. Brzostowski; Hongyan Li; Lunhua Liu; Timothy D. Veenstra; Carole A. Parent; Tian Jin

Activation of G protein-coupled receptors (GPCRs) leads to the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which go on to regulate various effectors involved in a panoply of cellular responses. During chemotaxis, Gβγ subunits regulate actin assembly and migration, but the protein(s) linking Gβγ to the actin cytoskeleton remains unknown. Here, we identified a Gβγ effector, ElmoE in Dictyostelium, and demonstrated that it is required for GPCR-mediated chemotaxis. Remarkably, ElmoE associates with Gβγ and Dock-like proteins to activate the small GTPase Rac, in a GPCR-dependent manner, and also associates with Arp2/3 complex and F-actin. Thus, ElmoE serves as a link between chemoattractant GPCRs, G-proteins and the actin cytoskeleton. The pathway, consisting of GPCR, Gβγ, Elmo/Dock, Rac, and Arp2/3, spatially guides the growth of dendritic actin networks in pseudopods of eukaryotic cells during chemotaxis.


Journal of Cell Biology | 2007

Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing

Xuehua Xu; Martin Meier-Schellersheim; Jianshe Yan; Tian Jin

Gprotein–coupled receptor (GPCR) signaling mediates a balance of excitatory and inhibitory activities that regulate Dictyostelium chemosensing to cAMP. The molecular nature and kinetics of these inhibitors are unknown. We report that transient cAMP stimulations induce PIP3 responses without a refractory period, suggesting that GPCR-mediated inhibition accumulates and decays slowly. Moreover, exposure to cAMP gradients leads to asymmetric distribution of the inhibitory components. The gradients induce a stable accumulation of the PIP3 reporter PHCrac-GFP in the front of cells near the cAMP source. Rapid withdrawal of the gradient led to the reassociation of G protein subunits, and the return of the PIP3 phosphatase PTEN and PHCrac-GFP to their pre-stimulus distribution. Reapplication of cAMP stimulation produces a clear PHCrac-GFP translocation to the back but not to the front, indicating that a stronger inhibition is maintained in the front of a polarized cell. Our study demonstrates a novel spatiotemporal feature of currently unknown inhibitory mechanisms acting locally on the PI3K activation pathway.


Immunologic Research | 2009

How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum

Tian Jin; Xuehua Xu; Jun Fang; Nilgun Isik; Jianshe Yan; Joseph A. Brzostowski; Dale Hereld

Human leukocytes, including macrophages and neutrophils, are phagocytic immune cells that capture and engulf pathogens and subsequently destroy them in intracellular vesicles. To accomplish this vital task, these leukocytes utilize two basic cell behaviors—chemotaxis for chasing down infectious pathogens and phagocytosis for destroying them. The molecular mechanisms controlling these behaviors are not well understood for immune cells. Interestingly, a soil amoeba, Dictyostelium discoideum, uses these same behaviors to pursue and injest its bacterial food source and to organize its multi-cellular development. Consequently, studies of this model system have provided and will continue to provide us with mechanistic insights into the chemotaxis and phagocytosis of immune cells. Here, we review recent research in these areas that have been conducted in the Chemotaxis Signal Section of NIAID’s Laboratory of Immunogenetics.


Molecular and Cellular Biology | 2005

Ligand-Induced Partitioning of Human CXCR1 Chemokine Receptors with Lipid Raft Microenvironments Facilitates G-Protein-Dependent Signaling

Xuanmao Jiao; Ning Zhang; Xuehua Xu; Joost J. Oppenheim; Tian Jin

ABSTRACT Ligand binding to a chemokine receptor triggers signaling events through heterotrimeric G-proteins. The mechanisms underlying receptor-mediated G-protein activation in the heterogeneous microenvironments of the plasma membrane are unclear. Here, using live-cell fluorescence resonance energy transfer imaging to detect the proximity between CXCR1-cyan fluorescent protein (CFP) and fluorescence probes that label lipid raft or non-lipid raft microdomains and using fluorescence recovery after photobleaching analysis to measure the lateral diffusion of CXCR1-CFP, we found that interleukin-8 induces association between the receptors and lipid raft microenvironments. Disruption of lipid rafts impaired G-protein-dependent signaling, such as Ca2+ responses and phosphatidylinositol 3-kinase activation, but had no effect on ligand-binding function and did not completely abolish ligand-induced receptor phosphorylation. Our results suggest a novel mechanism by which ligand binding to CXCR1 promotes lipid raft partitioning of receptors and facilitates activation of heterotrimeric G-proteins.


Science Signaling | 2010

Coupling Mechanism of a GPCR and a Heterotrimeric G Protein During Chemoattractant Gradient Sensing in Dictyostelium

Xuehua Xu; Tobias Meckel; Joseph A. Brzostowski; Jianshe Yan; Martin Meier-Schellersheim; Tian Jin

Imaging analyses and computer simulations suggest that a GPCR and its G protein associate only in the presence of ligand. Ligand-Induced Coupling A long-standing question regarding the activation of heterotrimeric G proteins by G protein–coupled receptors (GPCRs) is whether the association between the GPCR and the G protein is stimulated by the binding of ligand to the receptor, or whether the receptor and G protein are precoupled. Xu et al. addressed this question by measuring the mobilities of fluorescent fusion proteins of cyclic adenosine monophosphate (cAMP) receptor 1 (cAR1), a GPCR for the chemoattractant cAMP, and the Gβ subunit in live Dictyostelium cells. The receptor and G protein moved independently in the plasma membrane and at different speeds. Whereas exposure of cells to cAMP had no effect on the mobility of cAR1, the mobility of a fraction of the faster-moving G proteins was reduced. Together with computer simulations of the effects of various proposed receptor–G protein coupling mechanisms on downstream signaling, these data suggest that the interaction between cAR1 and its G protein does not occur until the receptor is bound to ligand, and provide a means for investigating the G protein–coupling mechanisms of other GPCRs. The coupling of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) with G proteins is fundamental for GPCR signaling; however, the mechanism of coupling is still debated. Moreover, how the proposed mechanisms affect the dynamics of downstream signaling remains unclear. Here, through experiments involving fluorescence recovery after photobleaching and single-molecule imaging, we directly measured the mobilities of cyclic adenosine monophosphate (cAMP) receptor 1 (cAR1), a chemoattractant receptor, and a G protein βγ subunit in live cells. We found that cAR1 diffused more slowly in the plasma membrane than did Gβγ. Upon binding of ligand to the receptor, the mobility of cAR1 was unchanged, whereas the speed of a fraction of the faster-moving Gβγ subunits decreased. Our measurements showed that cAR1 was relatively immobile and Gβγ diffused freely, suggesting that chemoattractant-bound cAR1 transiently interacted with G proteins. Using models of possible coupling mechanisms, we computed the temporal kinetics of G protein activation. Our fluorescence resonance energy transfer imaging data showed that fully activated cAR1 induced the sustained dissociation of G protein α and βγ subunits, which indicated that ligand-bound cAR1 activated G proteins continuously. Finally, simulations indicated that a high-affinity coupling of ligand-bound receptors and G proteins was essential for cAR1 to translate extracellular gradient signals into directional cellular responses. We suggest that chemoattractant receptors use a ligand-induced coupling rather than a precoupled mechanism to control the activation of G proteins during chemotaxis.


Molecular Biology of the Cell | 2015

GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis

Xuehua Xu; Nidhi Gera; Hongyan Li; Michelle Yun; Liyong Zhang; Youhong Wang; Q. Jane Wang; Tian Jin

A novel signaling pathway consisting of Gai, PLC, PKCβ, PKD, SSH2, and cofilin is crucial for GPCR-mediated chemotaxis in neutrophils. This pathway regulates depolymerization of the actin network that drives the directional migration of neutrophils.


Methods of Molecular Biology | 2006

Using Quantitative Fluorescence Microscopy and FRET Imaging to Measure Spatiotemporal Signaling Events in Single Living Cells

Xuehua Xu; Joseph A. Brzostowski; Tian Jin

The mechanisms that mediate how migratory eukaryotic cells amplify a shallow, extracellular chemoattractant gradient into a steep intracellular gradient of signaling components to guide chemotaxis remains unknown. To unravel these mechanisms, it is essential to quantitatively measure the spatiotemporal patterns of chemoattractant gradients, the dynamic movement of intracellular signaling pathway molecules, and the localized activation of these molecules in single living cells. Recent developments in live-cell fluorescence microscopy have permitted direct visualization and quantitative measurement of signal transduction events with high temporal and spatial resolution. Here, we outline fluorescence imaging methods to simultaneously visualize and quantitatively measure spatiotemporal changes in chemoattractant concentration by using the fluorescent tracer dye Alexa 594. Next, we provide a method to correlate the dynamic changes in ligand to the spatiotemporal changes in the second messenger phosphatidylinositol 3,4,5-triphosphate (PIP3) along the inner surface of the plasma membrane in live cells. Finally, we describe a fluorescence resonance energy transfer (FRET) method to determine the extent of heterotrimeric G protein activation in single living cells in response to various chemoattractant fields.


Journal of Cancer | 2016

ELMO1 Directly Interacts with Gβγ Subunit to Transduce GPCR Signaling to Rac1 Activation in Chemotaxis.

Youhong Wang; Xuehua Xu; Miao Pan; Tian Jin

Diverse chemokines bind to G protein-coupled receptors (GPCRs) to activate the small GTPase Rac to regulate F-actin dynamics during chemotaxis. ELMO and Dock proteins form complexes that function as guanine nucleotide exchange factors (GEFs) for Rac activation. However, the linkage between GPCR activation and the ELMO/Dock-mediated Rac activation is not fully understood. In the present study, we show that chemoattractants induce dynamic membrane translocation of ELMO1 in mammalian cells. ELMO1 plays an important role in GPCR-mediated chemotaxis. We also reveal that ELMO1 and Dock1 form a stable complex. Importantly, activation of chemokine GPCR promotes the interaction between ELMO1 and Gβγ. The ELMO1-Gβγ interaction is through the N-terminus of ELMO1 protein and is important for the membrane translocation of ELMO1. ELMO1 is required for Rac1 activation upon chemoattractant stimulation. Our results suggest that chemokine GPCR-mediated interaction between Gβγ and ELMO1/Dock1 complex might serve as an evolutionarily conserved mechanism for Rac activation to regulate actin cytoskeleton for chemotaxis of human cells.


Methods of Molecular Biology | 2009

Monitoring Dynamic GPCR Signaling Events Using Fluorescence Microscopy, FRET Imaging, and Single-Molecule Imaging

Xuehua Xu; Joseph A. Brzostowski; Tian Jin

How a eukaryotic cell translates a small concentration difference of a chemoattractant across the length of its surface into highly polarized intracellular responses is a fundamental question in chemotaxis. Chemoattractants are detected by G-protein-coupled receptors (GPCRs). Binding of chemoattractants to GPCRs induces the dissociation of heterotrimeric G-proteins into G alpha and G betagamma subunits, which in turn, activate downstream signaling networks. To fully understand the molecular mechanisms of chemotaxis, it is essential to quantitatively measure the dynamic changes of chemoattractant concentrations around cells, activation of heterotrimeric G-proteins, and the mobility of GPCR and G-protein subunits in the cell membrane. Here, we outline fluorescence imaging methods including Förster resonance energy transfer (FRET) imaging and a single-molecule analysis that allow us to measure the dynamic properties of GPCR signaling in single live cells.

Collaboration


Dive into the ehua Xu's collaboration.

Top Co-Authors

Avatar

Tian Jin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Brzostowski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jianshe Yan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongyan Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dale Hereld

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Miao Pan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michelle Yun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Q. Jane Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Xuanmao Jiao

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge