Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuejiang Guo is active.

Publication


Featured researches published by Xuejiang Guo.


Cell | 2014

Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.

Yuyu Niu; Bin Shen; Yiqiang Cui; Yongchang Chen; Jianying Wang; Lei Wang; Yu Kang; Xiaoyang Zhao; Wei Si; Wei Li; Andy Peng Xiang; Jiankui Zhou; Xuejiang Guo; Ye Bi; Chenyang Si; Bian Hu; Guoying Dong; Hong Wang; Zuomin Zhou; Tianqing Li; Tao Tan; Xiuqiong Pu; Fang Wang; Shaohui Ji; Qi Zhou; Xingxu Huang; Weizhi Ji; Jiahao Sha

Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.


Nature Genetics | 2012

A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia

Zhibin Hu; Yankai Xia; Xuejiang Guo; Juncheng Dai; Honggang Li; Hongliang Hu; Jiang Y; Feng Lu; Yibo Wu; Xiaoyu Yang; Huizhang Li; Bing Yao; Chuncheng Lu; Chenliang Xiong; Zheng Li; Yaoting Gui; Jiayin Liu; Zuomin Zhou; Hongbing Shen; Xinru Wang; Jiahao Sha

Non-obstructive azoospermia (NOA) is one of the most severe forms of male infertility. Its pathophysiology is largely unknown, and few genetic influences have been defined. To identify common variants contributing to NOA in Han Chinese men, we performed a three-stage genome-wide association study of 2,927 individuals with NOA and 5,734 controls. The combined analyses identified significant (P < 5.0 × 10−8) associations between NOA risk and common variants near PRMT6 (rs12097821 at 1p13.3: odds ratio (OR) = 1.25, P = 5.7 × 10−10), PEX10 (rs2477686 at 1p36.32: OR = 1.39, P = 5.7 × 10−12) and SOX5 (rs10842262 at 12p12.1: OR = 1.23, P = 2.3 × 10−9). These findings implicate genetic variants at 1p13.3, 1p36.32 and 12p12.1 in the etiology of NOA in Han Chinese men.


Cell Stem Cell | 2016

Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro

Quan Zhou; Mei Wang; Yan Yuan; X. L. Wang; Rui Fu; Haifeng Wan; Mingming Xie; Mingxi Liu; Xuejiang Guo; Ying Zheng; Guihai Feng; Qinghua Shi; Xiaoyang Zhao; Jiahao Sha; Qi Zhou

In vitro generation of functional gametes is a promising approach for treating infertility, although faithful replication of meiosis has proven to be a substantial obstacle to deriving haploid gamete cells in culture. Here we report complete in vitro meiosis from embryonic stem cell (ESC)-derived primordial germ cells (PGCLCs). Co-culture of PGCLCs with neonatal testicular somatic cells and sequential exposure to morphogens and sex hormones reproduced key hallmarks of meiosis, including erasure of genetic imprinting, chromosomal synapsis and recombination, and correct nuclear DNA and chromosomal content in the resulting haploid cells. Intracytoplasmic injection of the resulting spermatid-like cells into oocytes produced viable and fertile offspring, showing that this robust stepwise approach can functionally recapitulate male gametogenesis in vitro. These findings provide a platform for investigating meiotic mechanisms and the potential generation of human haploid spermatids in vitro.


Journal of Proteomics | 2013

In-depth proteomic analysis of the human sperm reveals complex protein compositions

Gaigai Wang; Yueshuai Guo; Tao Zhou; Xiaodan Shi; Jun Yu; Ye Yang; Yibo Wu; Jing Wang; Mingxi Liu; Xin Chen; Wenjiao Tu; Yan Zeng; Min Jiang; Suying Li; Pan Zhang; Quan Zhou; Bo Zheng; Chunmei Yu; Zuomin Zhou; Xuejiang Guo; Jiahao Sha

The male gamete (sperm) can fertilize an egg, and pass the male genetic information to the offspring. It has long been thought that sperm had a simple protein composition. Efforts have been made to identify the sperm proteome in different species, and only about 1000 proteins were reported. However, with advanced mass spectrometry and an optimized proteomics platform, we successfully identified 4675 human sperm proteins, of which 227 were testis-specific. This large number of identified proteins indicates the complex composition and function of human sperm. Comparison with the sperm transcriptome reveals little overlap, which shows the importance of future studies of sperm at the protein level. Interestingly, many signaling pathways, such as the IL-6, insulin and TGF-beta receptor signaling pathways, were found to be overrepresented. In addition, we found that 500 proteins were annotated as targets of known drugs. Three of four drugs studied were found to affect sperm movement. This in-depth human sperm proteome will be a rich resource for further studies of sperm function, and will provide candidate targets for the development of male contraceptive drugs.


BMC Genomics | 2009

Rapid evolution of mammalian X-linked testis microRNAs.

Xuejiang Guo; Bing Su; Zuomin Zhou; Jiahao Sha

BackgroundMicroRNAs (miRNAs), which are small, non-coding RNAs approximately 21-nucleotides in length, have become a major focus of research in molecular biology. Mammalian miRNAs are proposed to regulate approximately 30% of all protein-coding genes. Previous studies have focused on highly conserved miRNAs, but nonconserved miRNAs represent a potentially important source of novel functionalities during evolution.ResultsAn analysis of the chromosome distribution of miRNAs showed higher densities of miRNAs on the X chromosome compared to the average densities on autosomes in all eight mammalian species analyzed. The distribution pattern did not, however, apply well to species beyond mammals. In addition, by comparing orthologous human and mouse miRNAs, we found that X-linked miRNAs had higher substitution rates than autosomal miRNAs. Since the highest proportion of X-linked miRNAs were found in mouse testis, we tested the hypothesis that testis miRNAs are evolving faster on the X chromosome than on autosomes. Mature X-linked testis miRNAs had an average substitution rate between mouse and human that was almost 25-fold higher than mature testis miRNAs on autosomes. In contrast, for mature miRNAs with precursors not expressed in testis, no significant difference in the substitution rate between the X chromosome and autosomes was found. Among mammals, the rapid evolution of X-linked testis miRNAs was also observed in rodents and primates.ConclusionThe rapid evolution of X-linked testis miRNAs implies possible important male reproductive functions and may contribute to speciation in mammals.


PLOS Genetics | 2013

Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1.

Alexandra M Lopes; Kenneth I. Aston; Emma E. Thompson; Filipa Carvalho; João Gonçalves; Ni Huang; Rune Matthiesen; Michiel J. Noordam; Inés Quintela; Avinash Ramu; Catarina Seabra; Amy B. Wilfert; Juncheng Dai; Jonathan M. Downie; Susana Fernandes; Xuejiang Guo; Jiahao Sha; António Amorim; Alberto Barros; Angel Carracedo; Zhibin Hu; Sergey I. Moskovtsev; Carole Ober; Darius A. Paduch; Joshua D. Schiffman; Peter N. Schlegel; Mário Sousa; Douglas T. Carrell; Donald F. Conrad

Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a mans risk of disease by 10% (OR 1.10 [1.04–1.16], p<2×10−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p<1×10−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.


Obesity Reviews | 2010

Intelligence in relation to obesity: a systematic review and meta‐analysis

Zhangbin Yu; Shuping Han; X. G. Cao; Xuejiang Guo

We performed a systematic review describing obesity/intelligent quotient (IQ) association, particularly childhood IQ in relation to adulthood obesity. After screening 883 citations from five electronic databases, we included 26 studies, most of medium quality. The weighted mean difference (WMD) of the full IQ (FIQ)/obesity association in the pre‐school children was −15.1 (P > 0.05). Compared with controls, the WMD of FIQ and performance IQ of obese children were −2.8 and −10.0, respectively (P < 0.05), and the WMD of verbal IQ was −7.01 (P > 0.05). With increasing obesity, the FIQ in pre‐school children declined, with a significant difference for severely obese children and FIQ. In pubertal children, a slightly different effect of FIQ and obesity emerged. Two studies reported an inverse FIQ/obesity association in adults, but it was non‐significant after adjusting for educational attainment. Four papers found that childhood FIQ was inversely associated with adult body mass index, but after adjusting for education, became null. Overall there was an inverse FIQ/obesity association, except in pre‐school children. However, after adjusting for educational attainment, FIQ/obesity association was not significantly different. A lower FIQ in childhood was associated with obesity in later adulthood perhaps with educational level mediating the persistence of obesity in later life.


Scientific Reports | 2016

circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations.

Xiaoping Chen; Ping Han; Tao Zhou; Xuejiang Guo; Xiaofeng Song; Yan Li

It has been known that circular RNAs are widely expressed in human tissues and cells, and play important regulatory roles in physiological or pathological processes. However, there is lack of comprehensively annotated human circular RNAs database. In this study we established a circRNA database, named as circRNADb, containing 32,914 human exonic circRNAs carefully selected from diversified sources. The detailed information of the circRNA, including genomic information, exon splicing, genome sequence, internal ribosome entry site (IRES), open reading frame (ORF) and references were provided in circRNADb. In addition, circRNAs were found to be able to encode proteins, which have not been reported in any species. 16328 circRNAs were annotated to have ORF longer than 100 amino acids, of which 7170 have IRES elements. 46 circRNAs from 37 genes were found to have their corresponding proteins expressed according mass spectrometry. The database provides the function of data search, browse, download, submit and feedback for the user to study particular circular RNA of interest and update the database continually. circRNADb will be built to be a biological information platform for circRNA molecules and related biological functions in the future. The database can be freely available through the web server at http://reprod.njmu.edu.cn/circrnadb.


Journal of Proteome Research | 2010

Proteomic Analysis of Proteins Involved in Spermiogenesis in Mouse

Xuejiang Guo; Jian Shen; Zhengrong Xia; Rui Zhang; Ping Zhang; Chun Zhao; Jun Xing; Ling Chen; Wen Chen; Min Lin; Ran Huo; Bing Su; Zuomin Zhou; Jiahao Sha

Spermiogenesis is a unique process in mammals during which haploid round spermatids mature into spermatozoa in the testis. Its successful completion is necessary for fertilization and its malfunction is an important cause of male infertility. Here, we report the high-confidence identification of 2116 proteins in mouse haploid germ cells undergoing spermiogenesis: 299 of these were testis-specific and 155 were novel. Analysis of these proteins showed many proteins possibly functioning in unique processes of spermiogenesis. Of the 84 proteins annotated to be involved in vesicle-related events, VAMP4 was shown to be important for acrosome biogenesis by in vivo knockdown experiments. Knockdown of VAMP4 caused defects of acrosomal vesicle fusion and significantly increased head abnormalities in spermatids from testis and sperm from the cauda epididymis. Analysis of chromosomal distribution of the haploid genes showed underrepresentation on the X chromosome and overrepresentation on chromosome 11, which were due to meiotic sex chromosome inactivation and expansion of testis-expressed gene families, respectively. Comparison with transcriptional data showed translational regulation during spermiogenesis. This characterization of proteins involved in spermiogenesis provides an inventory of proteins useful for understanding the mechanisms of male infertility and may provide candidates for drug targets for male contraception and male infertility.


Cell Research | 2017

Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis

Phillip J. Hsu; Yunfei Zhu; Honghui Ma; Yueshuai Guo; Xiaodan Shi; Yuanyuan Liu; Meijie Qi; Zhike Lu; Hailing Shi; Jianying Wang; Yiwei Cheng; Guan-Zheng Luo; Qing Dai; Mingxi Liu; Xuejiang Guo; Jiahao Sha; Bin Shen; Chuan He

N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA. It is dynamically installed and removed, and acts as a new layer of mRNA metabolism, regulating biological processes including stem cell pluripotency, cell differentiation, and energy homeostasis. m6A is recognized by selective binding proteins; YTHDF1 and YTHDF3 work in concert to affect the translation of m6A-containing mRNAs, YTHDF2 expedites mRNA decay, and YTHDC1 affects the nuclear processing of its targets. The biological function of YTHDC2, the final member of the YTH protein family, remains unknown. We report that YTHDC2 selectively binds m6A at its consensus motif. YTHDC2 enhances the translation efficiency of its targets and also decreases their mRNA abundance. Ythdc2 knockout mice are infertile; males have significantly smaller testes and females have significantly smaller ovaries compared to those of littermates. The germ cells of Ythdc2 knockout mice do not develop past the zygotene stage and accordingly, Ythdc2 is upregulated in the testes as meiosis begins. Thus, YTHDC2 is an m6A-binding protein that plays critical roles during spermatogenesis.

Collaboration


Dive into the Xuejiang Guo's collaboration.

Top Co-Authors

Avatar

Jiahao Sha

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Zuomin Zhou

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Tao Zhou

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ran Huo

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yueshuai Guo

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhibin Hu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Min Lin

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun Zhao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Juncheng Dai

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Bo Zheng

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge