Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuemei Wang is active.

Publication


Featured researches published by Xuemei Wang.


Journal of Chromatography A | 2014

Electrochemical in situ fabrication of titanium dioxide-nanosheets on a titanium wire as a novel coating for selective solid-phase microextraction

Yi Li; Min Zhang; Yaoxia Yang; Xuemei Wang; Xinzhen Du

A novel TiO2-nanosheets coated fiber for solid-phase microextraction (SPME) was fabricated by anodization of Ti wire substrates in ethylene glycol with concentrated NH4F. The in situ fabricated TiO2-nanosheets were densely embedded into Ti substrates with about 1μm long, 300nm wide and 80nm thick. The as-fabricated TiO2-nanosheets coating was employed to extract polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters in combination with high performance liquid chromatography-UV detection (HPLC-UV). It was found that the TiO2-nanosheets coating exhibited high extraction capability and good selectivity for some UV filters frequently used in cosmetic sunscreen formulations. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear in the range of 0.1-400μgL(-1). The limits of detection of the proposed method were between 0.026μgL(-1) and 0.089μgL(-1) (S/N=3). The single fiber repeatability varied from 4.50% to 8.76% and the fiber-to-fiber reproducibility ranged from 7.75% to 9.64% for the extraction of spiked water with 50μgL(-1) UV filters (n=5). The SPME-HPLC-UV method was successfully established for the selective preconcentration and sensitive detection of target UV filters from real environmental water samples. Recovery of UV filters spiked at 10μgL(-1) and 25μgL(-1) ranged from 88.8% to 107% and the relative standard deviations were less than 9.8%. Furthermore the in situ growth of the TiO2-nanosheets coating was performed in a highly reproducible manner and the TiO2-nanosheets coated fiber has high mechanical strength, good stability and long service life.


Talanta | 2015

Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples

Mei Guo; Wenlan Song; Tiane Wang; Yi Li; Xuemei Wang; Xinzhen Du

A novel titanium dioxide-nanosheets coating on a titanium wire (TiO2NS-Ti) was in situ fabricated by one-step electrochemical anodization in ethylene glycol with ammonium fluoride and followed by phenyl-functionalization for selective solid-phase microextraction (SPME). The fabricated TiO2NS coating exhibits higher specific surface area and more active sites, it also provides an ideal nanostructure and a robust substrate for subsequent surface modification. These characteristics were useful for efficient extraction. The SPME performance of phenyl-functionalized TiO2NS-Ti (ph-TiO2NS-Ti) fiber was evaluated by using ultraviolet filters, polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs) as model compounds coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the ph-TiO2NS-Ti fiber exhibited high extraction capability, good selectivity and rapid mass transfer for PAHs. The main parameters affecting extraction performance were investigated and optimized. Under optimized conditions, the proposed fiber showed good extraction efficiency comparable to those of commercial polydimethylsiloxane and polyacrylate fibers toward PAHs. The calibration graphs were linear over the range of 0.05-300 µg L(-1). The limits of detection of the proposed method were 0.008-0.043 µg L(-1) (S/N=3). Single fiber repeatability varied from 3.51% to 5.23% and fiber-to-fiber reproducibility ranged from 4.43% to 7.65% for the extraction of water spiked with 25 µg L(-1) each analyte (n=5). The established SPME-HPLC-UV method was successfully applied to selective concentration and sensitive determination of target PAHs from real environmental water samples with recoveries from 86.2% to 112% at the spiking level of 10 µg L(-1) and 50 µg L(-1). The relative standard deviations were below 9.45%. Furthermore, the ph-TiO2NS-Ti fiber can be fabricated in a reproducible manner, and has high stability and long service lifetime.


Analytica Chimica Acta | 2015

In situ growth and phenyl functionalization of titania nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water samples followed by high performance liquid chromatography–UV detection

Li Li; Ruibin Guo; Yi Li; Mei Guo; Xuemei Wang; Xinzhen Du

Based on TiO2-nanoparticles coating fabricated by a one-step anodization method on titanium wire substrate, a novel phenyl functionalized solid-phase microextraction (SPME) fiber coating was prepared by simple and rapid in situ chemical assembling technique between the fiber surface titanol groups and trichlorophenylsilane reaction. The as-fabricated fiber exhibited good extraction capability for some UV filters and was employed to determine the ultraviolet (UV) filters in combination with high performance liquid chromatography-UV detection (HPLC-UV). The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the developed method was applied to detect several UV filters at trace concentration levels with only 8 mL of sample volume. They were determined in the range from 0.005 to 25 μg L(-1) with detection limits (S/N=3) from 0.1 to 50 ng L(-1). The relative standard deviations (RSDs) for single fiber repeatability varied from 4.6 to 6.5% (n=5) and fiber-to-fiber reproducibility (n=5) ranged from 5.5 to 9.1%. The linear ranges spanned two-four magnitudes with correlation coefficients above 0.9990. Five real water samples including four Yellow River water samples and one rain water sample were determined sensitively with good recoveries ranging from 86.2 to 105.5%. The functionalized fiber coating performed good reproducible manner, high mechanical strength, good stability and long service life. Moreover, this study proposed an efficient sample pretreatment method for the determination of UV filters from environmental water samples.


Analytica Chimica Acta | 2015

Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction

Yida Zhang; Yaoxia Yang; Yi Li; Min Zhang; Xuemei Wang; Xinzhen Du

A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L(-1) to 0.037 μg L(-1). The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L(-1) and 20 μg L(-1) ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.


Talanta | 2013

Application of sol–gel based octyl-functionalized mesoporous materials coated fiber for solid-phase microextraction

Xuemei Wang; Honghong Rao; Xiaoquan Lu; Xinzhen Du

Octyl-functionalizd mesoporous SBA-15 was first used as precursor and selective stationary phase to prepare solid-phase microextraction (SPME) fiber by using the sol-gel technique. The new SPME coating possessed honeycomb-like porous structure and rough surface and showed excellent chemical stability and longer life span (over 200 cycles of usage). The performance of the octyl-SBA-15-coated fiber was tested through extraction of eight polycyclic aromatic hydrocarbons (PAHs). The results showed that the home-made SPME fiber exhibited higher extraction efficiency compared with the commercial SPME (30 μm and 100 μm PDMS) fibers. For PAHs analysis, the new fiber showed good precision (<4.8%), low detection limits (0.024-0.050 μg/L), and wide linearity (0.1-200 μg/L) under the optimized conditions. The repeatability of fiber-to-fiber and batch-to-batch was 3.2-8.4% and 4.4-9.5%, respectively. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries in different spiking levels, which were 85.7-103.4% (10 μg/L) and 87.0-107.2% (50 μg/L) for water samples and 76.2-89.0% (10 μg/g) and 75.6%-91.2% (50 μg/g) for soil samples, respectively.


Journal of Chromatography A | 2015

Fabrication and application of zinc-zinc oxide nanosheets coating on an etched stainless steel wire as a selective solid-phase microextraction fiber.

Wenlan Song; Mei Guo; Yida Zhang; Min Zhang; Xuemei Wang; Xinzhen Du

A novel zinc-zinc oxide (Zn-ZnO) nanosheets coating was directly fabricated on an etched stainless steel wire substrate as solid-phase microextraction (SPME) fiber via previous electrodeposition of robust Zn coating. The scanning electron micrograph of the Zn-ZnO nanosheets coated fiber exhibits a flower-like nanostructure with high surface area. The SPME performance of as-fabricated fiber was investigated for the concentration and determination of polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the Zn-ZnO nanosheets coating exhibited high extraction capability, good selectivity and rapid mass transfer for some UV filters. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear over the range of 0.1-200μgL(-1). The limits of detection of the proposed method were 0.052-0.084μgL(-1) (S/N=3). The single fiber repeatability varied from 5.18% to 7.56% and the fiber-to-fiber reproducibility ranged from 6.74% to 8.83% for the extraction of spiked water with 50μgL(-1) UV filters (n=5). The established SPME-HPLC-UV method was successfully applied to the selective concentration and sensitive determination of target UV filters from real environmental water samples with recoveries from 85.8% to 105% at the spiking level of 10μgL(-1) and 30μgL(-1). The relative standard deviations were below 9.7%.


Journal of Separation Science | 2010

Determination of polycyclic aromatic hydrocarbons in water by a novel mesoporous‐coated stainless steel wire microextraction combined with HPLC

Xuemei Wang; Xinzhen Du; Honghong Rao; Xiao-Quan Lu

A novel mesoporous-coated stainless steel wire microextraction coupled with the HPLC procedure for quantification of four polycyclic aromatic hydrocarbons in water has been developed, based on the sorption of target analytes on a selectively adsorptive fiber and subsequent desorption of analytes directly into HPLC. Phenyl-functionalized mesoporous materials (Ph-SBA-15) were synthesized and coated on the surfaces of a stainless steel wire. Due to the high porosity and large surface area of the Ph-SBA-15, high extraction efficiency is expected. The influence of various parameters on polycyclic aromatic hydrocarbons extraction efficiency were thoroughly studied and optimized (such as the extraction temperature, the extraction time, the desorption time, the stirring rate and the ionic strength of samples). The results showed that each compound for the analysis of real water samples was tested under optimal conditions with the linearity ranging from 1.02×10(-3) to 200  μg/ L and the detection limits were found from 0.32 to 2.44  ng/ L, respectively. The RSD of the new method was smaller than 4.10%.


Analytical Methods | 2015

A novel electrochemical sensor for capsaicin based on mesoporous cellular foams

Zhonghua Xue; Chenxian Hu; Honghong Rao; Xuemei Wang; Xibin Zhou; Xiuhui Liu; Xiaoquan Lu

A novel electrochemical sensor for capsaicin using mesoporous cellular foams (MCFs) as the sensitive material is reported. The surface morphology and electrochemical properties of the prepared MCFs modified carbon paste electrode (CPE) were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed modified electrode shows high sensitivity towards the oxidation of capsaicin in 0.1 M perchloric acid solutions (pH 1.0). Under optimized conditions, the electrochemical oxidation current of capsaicin was found to be linearly related to the concentration over the range 0.76 to 11.65 μM with a correlation coefficient of 0.9990, and the detection limit was found to be 0.08 μM at a signal-to-noise ratio of 3. The proposed electrochemical sensor was successfully applied to the determination of capsaicin by using standard addition method with satisfactory results.


Analytical Letters | 2013

Mini Review: Electroanalytical Sensors of Mesoporous Silica Materials

Honghong Rao; Xuemei Wang; Xinzhen Du; Zhonghua Xue

Mesoporous silica materials are promising substrates for electroanalytical sensors and electrocatalysis. Their characteristics include uniform pore sizes, surface areas in excess of 1000 m2 g−1, and long-range ordering of the packing of pores. The size scale, aspect ratio, and properties of mesoporous silica provide advantages in a variety of sensor applications. To improve performance, miniaturize platforms, and expand applications for trace analysis, novel materials with high sensitivity and rapid response have been developed and employed in recent years. These materials include pure mesoporous silica, mesoporous silica functionalized with organic groups, and composite or hybrid mesoporous silica. In this review, recent advances are outlined involving the application of mesoporous silica-based materials in electroanalytical sensors.


Journal of Chromatography A | 2017

Preparation of three-dimensional mesoporous polymer in situ polymerization solid phase microextraction fiber and its application to the determination of seven chlorophenols

Xuemei Wang; Huan Wang; Pengfei Huang; Xiaomin Ma; Xiaoquan Lu; Xinzhen Du

A superior solid-phase microextraction (SPME) fiber-coating material, three dimensional order mesoporous polymers with Ia-3d bicontinuous cubic structure (3D-OMPs) was in situ coated on a stainless steel wire by solvent evaporation induced self-assembly (EISA) and thermo-polymerization. Fourier-transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angel X-ray diffraction (SAXRD), N2 adsorption-desorption transmission, and thermogravimetry analysis (TGA) were applied to the characterization of the synthesized 3D-OMPs coating. The performance and feasibility of the homemade fiber was evaluated through direct immersion (DI) SPME followed by high-performance liquid chromatography-UV detector (HPLC-UV) for the simultaneous extraction of seven chlorophenols in water samples. Under the optimum conditions, the prepared fiber exhibited excellent extraction properties as compared to three commercial fibers, the DI-SPME-HPLC-UV method showed low limits of detection (0.32-1.85μgL-1), wide linear ranges (5.0-1000μgL-1), and acceptable reproducibility (relative standard deviation, RSD<7.6% for one fiber, RSD<8.9% for fiber to fiber). Moreover, the method was further successfully applied to the analysis of seven CPs in real samples with good recoveries (80.5-99.5%) and satisfactory precisions (RSD<9.2%). It was confirmed that the proposed method has high sensitivity, outstanding selectivity and good reproducibility to the determination of trace CPs in the environmental water.

Collaboration


Dive into the Xuemei Wang's collaboration.

Top Co-Authors

Avatar

Xinzhen Du

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaoquan Lu

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Pengfei Huang

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaomin Ma

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Honghong Rao

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Huan Wang

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Huiju Wang

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Mei Guo

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Yaoxia Yang

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Min Zhang

Northwest Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge