Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuemian Lu is active.

Publication


Featured researches published by Xuemian Lu.


PLOS ONE | 2012

Diabetes-Induced Hepatic Pathogenic Damage, Inflammation, Oxidative Stress, and Insulin Resistance Was Exacerbated in Zinc Deficient Mouse Model

Chi Zhang; Xuemian Lu; Yi Tan; Bing Li; Xiao Miao; Litai Jin; Xue Shi; Xiang Zhang; Lining Miao; Xiaokun Li; Lu Cai

Objectives Zinc (Zn) deficiency often occurs in the patients with diabetes. Effects of Zn deficiency on diabetes-induced hepatic injury were investigated. Methods Type 1 diabetes was induced in FVB mice with multiple low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with and without Zn chelator, N,N,N′,N′-tetrakis (2-pyridylemethyl) ethylenediamine (TPEN), at 5 mg/kg body-weight daily for 4 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level and liver histopathological and biochemical changes. Results Hepatic Zn deficiency (lower than control level, p<0.05) was seen in the mice with either diabetes or TPEN treatment and more evident in the mice with both diabetes and TPEN. Zn deficiency exacerbated hepatic injuries, shown by further increased serum ALT, hepatic lipid accumulation, inflammation, oxidative damage, and endoplasmic reticulum stress-related cell death in Diabetes/TPEN group compared to Diabetes alone. Diabetes/TPEN group also showed a significant decrease in nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and transcription action along with significant increases in Akt negative regulators, decrease in Akt and GSK-3β phosphorylation, and increase in nuclear accumulation of Fyn (a Nrf2 negative regulator). In vitro study with HepG2 cells showed that apoptotic effect of TPEN at 0.5–1.0 µM could be completely prevented by simultaneous Zn supplementation at the dose range of 30–50 µM. Conclusions Zn is required for maintaining Akt activation by inhibiting the expression of Akt negative regulators; Akt activation can inhibit Fyn nuclear translocation to export nuclear Nrf2 to cytoplasm for degradation. Zn deficiency significantly enhanced diabetes-induced hepatic injury likely through down-regulation of Nrf2 function.


PLOS ONE | 2013

Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

Chi Zhang; Minglong Shao; Hong Yang; Liangmiao Chen; Lechu Yu; Weitao Cong; Haishan Tian; Fangfang Zhang; Peng Cheng; Litai Jin; Yi Tan; Xiaokun Li; Lu Cai; Xuemian Lu

Background Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia). Increasing evidence suggests that fibroblast growth factor (FGF)21 has a crucial role in lipid metabolism under diabetic conditions. Objective The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. Methods Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight) or streptozotocin (150 mg/kg) to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg) for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. Results Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. Conclusion These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.


PLOS ONE | 2014

Effects of subclinical hypothyroidism on maternal and perinatal outcomes during pregnancy: a single-center cohort study of a Chinese population.

Liangmiao Chen; Wen-Jun Du; Jie Dai; Qian Zhang; Guang-Xin Si; Hong Yang; Enling Ye; Qingshou Chen; Lechu Yu; Chi Zhang; Xuemian Lu

Objective Adverse maternal outcomes and perinatal complications are closely associated with overt maternal hypothyroidism, but whether these complications occur in women with subclinical hypothyroidism (SCH) during pregnancy remains controversial. The aim of this study was to evaluate the effects of SCH on maternal and perinatal outcomes during pregnancy. Methods A prospective study of data from 8012 pregnant women (371 women with SCH, 7641 euthyroid women) was performed. Maternal serum samples were collected in different trimesters to examine thyroid hormone concentrations. SCH was defined as a thyroid stimulating hormone concentration exceeding the trimester-specific reference value with a normal free thyroxine concentration. The occurrence of maternal outcomes, including gestational hypertension (GH), gestational diabetes mellitus, placenta previa, placental abruption, prelabor rupture of membranes (PROM), and premature delivery; and perinatal outcomes, including intrauterine growth restriction (IUGR), fetal distress, low birth weight (LBW; live birth weight ≤2500 g), stillbirth, and malformation, was recorded. Logistic regression with adjustment for confounding demographic and medical factors was used to determine the risks of adverse outcomes in patients with SCH. Results Compared with euthyroid status, SCH was associated with higher rates of GH (1.819% vs. 3.504%, P = 0.020; χ 2 = 7.345; odds ratio (OR), 2.243; 95% confidence interval (CI), 1.251–4.024), PROM (4.973% vs. 8.625%, P = 0.002; χ 2 = 72.102; adjusted OR, 6.014; 95% CI, 3.975–9.099), IUGR (1.008% vs. 2.965%, <0.001; χ 2 = 13.272; adjusted OR, 3.336; 95% CI, 1.745–6.377), and LBW (1.885% vs. 4.582%, P<0.001; χ 2 = 13.558; adjusted OR, 2.919; 95% CI, 1.650–5.163). Conclusions The results of this study indicate that pregnant women with SCH had increased risks of GH and PROM, and their fetuses and infants had increased risks of IUGR and LBW. Thus, routine maternal thyroid function testing is necessary to improve maternal and perinatal outcomes.


PLOS ONE | 2014

Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

Minglong Shao; Xuemian Lu; Weitao Cong; Xiao Xing; Yi Tan; Yunqian Li; Xiaokun Li; Litai Jin; Xiaojie Wang; Juancong Dong; Shunzi Jin; Chi Zhang; Lu Cai

Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.


Molecular Endocrinology | 2015

Minireview: Roles of Fibroblast Growth Factors 19 and 21 in Metabolic Regulation and Chronic Diseases

Fangfang Zhang; Lechu Yu; Xiufei Lin; Peng Cheng; Luqing He; Xiaokun Li; Xuemian Lu; Yi Tan; Hong Yang; Lu Cai; Chi Zhang

Fibroblast growth factor (FGF)19 and FGF21 are hormones that regulate metabolic processes particularly during feeding or starvation, thus ultimately influencing energy production. FGF19 is secreted by the intestines during feeding and negatively regulates bile acid synthesis and secretion, whereas FGF21 is produced in the liver during fasting and plays a crucial role in regulating glucose and lipid metabolism, as well as maintaining energy homeostasis. FGF19 and FGF21 are regarded as late-acting hormones because their functions are only used after insulin and glucagon have completed their actions. Although FGF19 and FGF21 are activated under different conditions, they show extensively functional overlap in terms of improving glucose tolerance, insulin sensitivity, weight loss, and lipid, and energy metabolism, particularly in pathological conditions such as diabetes, obesity, metabolic syndrome, and cardiovascular and renal diseases. Most patients with these metabolic diseases exhibit reduced serum FGF19 levels, which might contribute to its etiology. In addition, the simultaneous increase in serum FGF21 levels is likely a compensatory response to reduced FGF19 levels, and the 2 proteins concertedly maintain metabolic homeostasis. Here, we review the physiological and pharmacological cross talk between FGF19 and FGF21 in relation to the regulation of endocrine metabolism and various chronic diseases.


Toxicology Letters | 2015

Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein.

Tingting Liang; Quan Zhang; Weixia Sun; Ying Xin; Zhiguo Zhang; Yi Tan; Shanshan Zhou; Chi Zhang; Lu Cai; Xuemian Lu; Mingliang Cheng

Whether zinc is able to improve diabetes-induced liver injury remains unknown. Transgenic type 1 diabetic (OVE26) mice develop hyperglycemia at 3 weeks old; therefore therapeutic effect of zinc on diabetes-induced liver injury was investigated in OVE26 mice. Three-month old OVE26 and age-matched wild-type mice were treated by gavage with saline or zinc at 5mg/kg body-weight every other day for 3 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level with liver histopathological and biochemical changes. OVE26 mice at 6 months old showed significant increases in serum ALT level and hepatic oxidative damage, endoplasmic reticulum stress and associated cell death, mild inflammation, and fibrosis. However, all these hepatic morphological and functional changes were significantly prevented in 3-month zinc-treated OVE26 mice. Mechanistically, zinc treatment significantly increased hepatic metallothionein, a protein with known antioxidant activity, in both wild-type and OVE26 mice. These results suggest that there were significantly functional, structural and biochemical abnormalities in the liver of OVE26 diabetic mice at 6 months old; however, all these changes could be prevented with zinc treatment, which was associated with the upregulation of hepatic metallothionein expression.


Free Radical Biology and Medicine | 2016

Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy.

Yanli Cheng; Jingjing Zhang; Weiying Guo; Fengsheng Li; Weixia Sun; Jing Chen; Chi Zhang; Xuemian Lu; Yi Tan; Wenke Feng; Yaowen Fu; Gilbert C. Liu; Zhonggao Xu; Lu Cai

The lipid lowering medication, fenofibrate (FF), is a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, possessing beneficial effects for type 2 diabetic nephropathy (DN). We investigated whether FF can prevent the development of type 1 DN, and the underlying mechanisms. Diabetes was induced by a single intraperitoneal injection of streptozotocin in C57BL/6J mice. Mice were treated with oral gavage of FF at 100mg/kg every other day for 3 and 6 months. Diabetes-induced renal oxidative stress, inflammation, apoptosis, lipid and collagen accumulation, and renal dysfunction were accompanied by significant decrease in PI3K, Akt, and GSK-3β phosphorylation as well as an increase in the nuclear accumulation of Fyn [a negative regulator of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. All these adverse effects were significantly attenuated by FF treatment. FF also significantly increased fibroblast growth factor 21 (FGF21) expression and enhanced Nrf2 function in diabetic and non-diabetic kidneys. Moreover, FF-induced amelioration of diabetic renal damage, including the stimulation of PI3K/Akt/GSK-3β/Fyn pathway and the enhancement of Nrf2 function were abolished in FGF21-null mice, confirming the critical role of FGF21 in FF-induced renal protection. These results suggest for the first time that FF prevents the development of DN via up-regulating FGF21 and stimulating PI3K/Akt/GSK-3β/Fyn-mediated activation of the Nrf2 pathway.


PLOS ONE | 2013

The Prevention of Diabetic Cardiomyopathy by Non-Mitogenic Acidic Fibroblast Growth Factor Is Probably Mediated by the Suppression of Oxidative Stress and Damage

Chi Zhang; Linbo Zhang; Shali Chen; Biao Feng; Xuemian Lu; Yang Bai; Guang Liang; Yi Tan; Minglong Shao; Melissa Skibba; Litai Jin; Xiaokun Li; Subrata Chakrabarti; Lu Cai

Background Emerging evidence showed the beneficial effect of acidic fibroblast growth factor (aFGF) on heart diseases. The present study investigated whether non-mitogenic aFGF (nm-aFGF) can prevent diabetic cardiomyopathy and the underlying mechanisms, if any. Methodology/Principal Findings Type 1 diabetes was induced in mice by multiple intraperitoneal injections of low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with or without nm-aFGF at 10 µg/kg daily for 1 and 6 months. Blood pressure and cardiac function were assessed. Cardiac H9c2 cell, human microvascular endothelial cells, and rat cardiomyocytes were exposed to high glucose (25 mM) for mimicking an in vitro diabetic condition for mechanistic studies. Oxidative stress, DNA damage, cardiac hypertrophy and fibrosis were assessed by real-time qPCR, immunofluorescent staining, Western blotting, and pathological examination. Nm-aFGF significantly prevented diabetes-induced hypertension and cardiac dysfunction at 6 months. Mechanistic studies demonstrated that nm-aFGF showed the similar preventive effect as the native aFGF on high glucose-induced oxidative stress (increase generation of reactive oxygen species) and damage (cellular DNA oxidation), cell hypertrophy, and fibrotic response (increased mRNA expression of fibronectin) in three kinds of cells. These in vitro findings were recaptured by examining the heart of the diabetic mice with and without nm-aFGF. Conclusions These results suggest that nm-aFGF can prevent diabetic cardiomyopathy, probably through attenuation of cardiac oxidative stress, hypertrophy, and fibrosis.


International Journal of Biological Sciences | 2015

ER stress and autophagy dysfunction contribute to fatty liver in diabetic mice.

Quan Zhang; Yan Li; Tingting Liang; Xuemian Lu; Chi Zhang; Xingkai Liu; Xin Jiang; Robert C.G. Martin; Mingliang Cheng; Lu Cai

Diabetes mellitus and nonalcoholic fatty liver disease (NAFLD) are often identified in patients simultaneously. Recent evidence suggests that endoplasmic reticulum (ER) stress and autophagy dysfunction play an important role in hepatocytes injury and hepatic lipid metabolism, however the mechanistic interaction between diabetes and NAFLD is largely unknown. In this study, we used a diabetic mouse model to study the interplay between ER stress and autophagy during the pathogenic transformation of NAFLD. The coexist of inflammatory hepatic injury and hepatic accumulation of triglycerides (TGs) stored in lipid droplets indicated development of steatohepatitis in the diabetic mice. The alterations of components for ER stress signaling including ATF6, GRP78, CHOP and caspase12 indicated increased ER stress in liver tissues in early stage but blunted in the later stage during the development of diabetes. Likewise, autophagy functioned well in the early stage but suppressed in the later stage. The inactivation of unfolded protein response and suppression of autophagy were positively related to the development of steatohepatitis, which linked to metabolic abnormalities in the compromised hepatic tissues in diabetic condition. We conclude that the adaption of ER stress and impairment of autophagy play an important role to exacerbate lipid metabolic disorder contributing to steatohepatitis in diabetes.


Experimental Diabetes Research | 2016

Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases

Peng Cheng; Fangfang Zhang; Lechu Yu; Xiufei Lin; Luqing He; Xiaokun Li; Xuemian Lu; Xiaoqing Yan; Yi Tan; Chi Zhang

Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of β-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation.

Collaboration


Dive into the Xuemian Lu's collaboration.

Top Co-Authors

Avatar

Chi Zhang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Hong Yang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Yi Tan

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Lu Cai

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Lechu Yu

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiaokun Li

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Cheng

Wenzhou Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge