Xuepeng Zhang
Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuepeng Zhang.
Journal of Organic Chemistry | 2014
Xuepeng Zhang; Huiying Xu; Cunyuan Zhao
The reaction mechanisms and chemoselectivity on the intramolecular allylic C-H amination versus alkene aziridination of 4-pentenylsulfamate promoted by four elaborately selected dirhodium paddlewheel complexes are investigated by a DFT approach. A predominant singlet concerted, highly asynchronous pathway and an alternative triplet stepwise pathway are obtained in either C-H amination or alkene aziridination reactions when mediated by weak electron-donating catalysts. A singlet stepwise C-H amination pathway is obtained under strongly donating catalysts. The rate-determining step in the C-H amination is the H-abstraction process. The subsequent diradical-rebound C-N formation in the triplet pathway or the combination of the allylic carbocation and the negative changed N center in the singlet pathway require an identical energy barrier. A mixed singlet-triplet pathway is preferred in either the C-H insertion or alkene aziridination in the Rh2(NCH3CHO)4 entry that the triplet pathway is initially favorable in the rate-determining steps, and the resultant triplet intermediates would convert to a singlet reaction coordinate. The nature of C-H amination or alkene aziridination is estimated to be a stepwise process. The theoretical observations presented in the paper are consistent with the experimental results and, more importantly, provide a thorough understanding of the nature of the reaction mechanisms and the minimum-energy crossing points.
Journal of Organic Chemistry | 2013
Xiting Zhang; Zhuofeng Ke; Nathan J. DeYonker; Huiying Xu; Zhi-Feng Li; Xianyan Xu; Xuepeng Zhang; Cheng-Yong Su; David Phillips; Cunyuan Zhao
The mechanisms and enantioselectivities of the dirhodium (Rh2L4, L = formate, N-methylformamide, S-nap)-catalyzed intramolecular C-H aminations of 3-phenylpropylsulfamate ester have been investigated in detail with BPW91 density functional theory computations. The reactions catalyzed by the Rh2(II,II) catalysts start from the oxidation of the Rh2(II,II) dimer to a triplet mixed-valent Rh2(II,III)-nitrene radical, which should facilitate radical H-atom abstraction. However, in the Rh2(formate)4-promoted reaction, as a result of a minimum-energy crossing point (MECP) between the singlet and triplet profiles, a direct C-H bond insertion is postulated. The Rh2(N-methylformamide)4 reaction exhibits quite different mechanistic characteristics, taking place via a two-step process involving (i) intramolecular H-abstraction on the triplet profile to generate a diradical intermediate and (ii) C-N formation by intersystem crossing from the triplet state to the open-shell singlet state. The stepwise mechanism was found to hold also in the reaction of 3-phenylpropylsulfamate ester catalyzed by Rh2(S-nap)4. Furthermore, the diradical intermediate also constitutes the starting point for competition steps involving enantioselectivity, which is determined by the C-N formation open-shell singlet transition state. This mechanistic proposal is supported by the calculated enantiomeric excess (94.2% ee) with the absolute stereochemistry of the product as R, in good agreement with the experimental results (92.0% ee).
Inorganic Chemistry | 2014
Xuepeng Zhang; Yajie Zhu; Xiaowei Zheng; David Phillips; Cunyuan Zhao
The hydrolysis mechanisms of phosphor-monoester monoanions NPP(-) (p-nitrophenyl phosphate) catalyzed by unsymmetrical bivalent dinuclear complexes are explored using DFT calculations in this report. Four basic catalyst-substrate binding modes are proposed, and two optional compartments for the location of the nucleophile-coordinated metal center are also considered. Five plausible mechanisms are examined in this computational study. Mechanisms 1, 2, and 3 employ an unsymmetrical dizinc complex. All three mechanisms are based on concerted SN2 addition-substitution pathways. Mechanism 1, which involves more electronegative oxygen atoms attached to the imine nitrogen atoms in the nucleophile-coordinated compartment, was found to be more competitive compared to the other two mechanisms. Mechanisms 4 and 5 are based on consideration of the substitution of the bivalent metal centers and the intrinsic flexibility of the ligand. Both mechanisms 4 and 5 are based on stepwise SN2-type reactions. Magnesium ions with hard base properties and more available coordination sites were found to be good candidates as a substitute in the M(II) dinuclear phosphatases. The reaction energy barriers for the more distorted complexes are lower than those of the less distorted complexes. The proper intermediate distance and a functional second coordination sphere lead to significant catalytic power in the reactions studied. More importantly, the mechanistic differences between the concerted and the stepwise pathways suggest that a better nucleophile with more available coordination sites (from either the metal centers or a functional second coordination sphere) favors concerted mechanisms for the reactions of interest. The results reported in the paper are consistent with and provide a reasonable interpretation for experimental observations in the literature. More importantly, our present results provide some practical suggestions for the selection of the metal centers and how to approach the design of a catalyst.
RSC Advances | 2015
Xianyan Xu; Jing Li; Xuepeng Zhang; Huiying Xu; Zhuofeng Ke; Cunyuan Zhao
Removing or reducing NO is meaningful for environment protection. Herein, the investigation of the probability of NO reduction on silicene is presented utilizing DFT calculations. Two mechanisms for NO reduction on silicene are provided: a direct dissociation mechanism and a dimer mechanism. The direct dissociation mechanism is characterized as the direct breaking of the N–O bond. The calculated potential energy surfaces show that the total energy barrier in the favored direct dissociation pathway is 0.466 eV. On the other hand, the dimer mechanism is identified to undergo a (NO)2 dimer formation on silicene, which then decomposes into N2O + Oad or N2 + 2Oad. The (NO)2 dimer formation on silicene is found to be feasible both in thermodynamics and kinetics. The formation energy barriers for (NO)2 dimer are lower than 0.231 eV. The calculation results indicate that the (NO)2 dimers can be readily reduced into N2O or N2. The energy barriers in the favored decomposition pathways to produce N2O are quite low (<0.032 eV). The energy barrier for the release of N2 is calculated to be 0.156 eV. The further reduction of N2O to N2 on silicene is also investigated. The results indicate it is easy to reduce N2O to N2 with an energy barrier of only 0.445 eV. NO reduction on silicene hence prefers to generate N2 via the dimer mechanism when compared to the direct dissociation. NO reduction on silicene with silicane as substrate is further proved to proceed via the same reduction mechanism as compared with the free-standing model. Hence, our results presented here suggest that silicene can be a potential material in NO removal, which will reduce NO into environmentally-friendly gases.
Inorganic Chemistry | 2014
Xuepeng Zhang; Yajie Zhu; Hui Gao; Cunyuan Zhao
The solvolysis mechanisms of RNA phosphodiester model 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP) catalyzed by mononuclear zinc(II) complexes are investigated in the paper via a theoretical approach. The general-base-catalyzed (GBC) and specific-base-catalyzed (SBC) mechanisms are thoroughly discussed in the paper, and the calculations indicate a SBC mechanism (also named as the direct nucleophilic attack mechanism) when the cyclization of HpPNP is promoted by the Zn:[12]aneN3 complex ([12]aneN3 = 1,5,9-triazacyclododecane). The ligand effect is considered by involving two different catalysts, and the results show that the increasing size catalyst provides a lower energy barrier and a significant mechanistic preference to the SBC mechanism. The solvent medium effect is also explored, and reduced polarity/dielectric constant solvents, such as light alcohols methanol and ethanol, are more favorable. Ethanol is proven to be a good solvent medium because of its low dielectric constant. The computational results are indicative of concerted pathways. Our theoretical results are consistent with and well interpret the experimental observations and, more importantly, provide practical suggestions on the catalyst design and selection of reaction conditions.
Chemistry: A European Journal | 2016
Xuepeng Zhang; Huiying Xu; Xueping Liu; David Lee Phillips; Cunyuan Zhao
The intramolecular benzylic C-H amination catalyzed by bimetallic paddlewheel complexes was investigated by using density functional theory calculations. The metal-metal bonding characters were investigated and the structures featuring either a small HOMO-LUMO gap or a compact SOMO energy scope were estimated to facilitate an easier one-electron oxidation of the bimetallic center. The hydrogen-abstraction step was found to occur through three manners, that is, hydride transfer, hydrogen migration, and proton transfer. The imido N species are more preferred in the Ru-Ru and Pd-Mn cases whereas coexisting N species, namely, singlet/triplet nitrene and imido, were observed in the Rh-Rh and Pd-Co cases. On the other hand, the triplet nitrene N species were found to be predominant in the Pd-Ni and Pd-Zn systems. A concerted asynchronous mechanism was found to be modestly favorable in the Rh-Rh-catalyzed reactions whereas the Pd-Co-catalyzed reactions demonstrated a slight preference for a stepwise pathway. Favored stepwise pathways were seen in each Ru-Ru- and Pd-Mn-catalyzed reactions and in the triplet nitrene involved Pd-Ni and Pd-Zn reactions. The calculations suggest the feasibility of the Pd-Mn, Pd-Co, and Pd-Ni paddlewheel complexes as being economical alternatives for the expensive dirhodium/diruthenium complexes in C-H amination catalysis.
ChemPhysChem | 2014
Xuepeng Zhang; Xianyan Xu; Huiying Xu; Xiting Zhang; David Lee Phillips; Cunyuan Zhao
Density functional calculations are utilized to explore the hydrolysis mechanisms of the phosphomonoester 4-nitrophenyl phosphate catalyzed by a symmetrical zinc(II) complex. The formation process and properties of the active catalyst are verified. Eight plausible mechanisms are proposed and categorized into three groups. All of the proposed mechanisms, except for Mechanism 7 (see text), are S(N)2-type addition-substitution reaction pathways. Nucleophilic attack at the ortho position occurs in Mechanism 7 with a relatively high reaction barrier. Mechanisms 1 and 2 in the monocatalyst model, Mechanisms 5 to 7 in the sandwich-dual-catalyst model, as well as the nucleophilic addition-substitution step in Mechanism 8 are concerted reaction pathways, whereas the rest appear to occur in a stepwise manner. Meanwhile, the explicit solvent model is utilized to consider direct hydrogen bonds and solvation interactions and these results indicate that the added water molecule is involved in the hydrolysis process, but does not change the mechanisms significantly. Mechanism 8, with the lowest reaction barrier, is the most favored reaction pathway of the eight proposed mechanisms, although Mechanisms 1, 4, and 6 are in competition with Mechanism 8. In consideration of the zinc(II) complex concentration, Mechanism 1 is only the predominant reaction pathway at a low zinc(II) complex concentration; Mechanisms 4 and 6 tend to be more competitive with increasing concentration of the zinc(II) complexes, and Mechanism 8 is favored at high zinc(II) complex concentrations. Our calculated results are consistent with, and can be used to systematically interpret, experimental observations. More importantly, insightful suggestions are made regarding the catalyst design and selection of the reaction environment.
RSC Advances | 2016
Huiying Xu; Xuepeng Zhang; Zhuofeng Ke; Cunyuan Zhao
Dirhodium-contained catalysts mediated aliphatic C–H bond amination of aryl azides were studied using BPW91 functional. Calculations show the reactions with Rh2(esp)2 (esp = α,α,α′,α′-tetramethyl-1,3-benzenedipropionic acid) and the model compound Rh2(OCHO)4 as catalysts take place via similar mechanisms. Firstly, the dirhodium metal complex coordinates with the substrate and releases nitrogen gas. This rate-determining step results in the formation of the metal nitrene. Metal nitrene mediated intramolecular C–H bond amination is conducted via two alternative pathways, respectively. The singlet metal nitrene mediated intramolecular C–H bond amination occurs via a concerted and asynchronous pathway involving direct metal nitrene insertion into the C–H bond. The triplet metal nitrene case is a stepwise pathway involving a hydrogen transfer and then a diradical recombination. Our study suggests the triplet H-abstraction is more favorable than the singlet one. The resulted triplet intermediate would not go through the high-barrier diradical recombination process, but across to the singlet pathway via a MECP and form the final singlet product. The tethered esp ligands in Rh2(esp)2 provide steric effects to constrain the substrate-catalyst compound but indicates inconspicuous influence on the mechanisms of dirhodium catalyzed aliphatic C–H bond amination of aryl azides.
Inorganic Chemistry | 2013
Sujuan Wang; Qiuli Yang; Jianyong Zhang; Xuepeng Zhang; Cunyuan Zhao; Long Jiang; Cheng-Yong Su
Dalton Transactions | 2014
Xuepeng Zhang; Xiaowei Zheng; David Lee Phillips; Cunyuan Zhao