Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueqian Gong is active.

Publication


Featured researches published by Xueqian Gong.


Journal of Biological Chemistry | 2012

Reactivation of Mitogen-activated Protein Kinase (MAPK) Pathway by FGF Receptor 3 (FGFR3)/Ras Mediates Resistance to Vemurafenib in Human B-RAF V600E Mutant Melanoma

Vipin Yadav; Xiaoyi Zhang; Jiangang Liu; Shawn T. Estrem; Shuyu Li; Xueqian Gong; Sean Buchanan; James Robert Henry; James J. Starling; Sheng-Bin Peng

Background: B-RAF V600E melanomas rapidly develop resistance to B-RAF inhibitors in the clinic. Results: FGFR3/Ras signaling is elevated and induces resistance to vemurafenib in vemurafenib-resistant cells. Conclusion: FGFR3/Ras confers resistance to B-RAF inhibition via MAPK pathway reactivation. Significance: A novel mechanism of resistance to B-RAF inhibitors is described and potential therapeutic strategies are suggested. Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma.


Cancer Cell | 2015

Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers

Sheng-Bin Peng; James Robert Henry; Michael Kaufman; Wei-Ping Lu; Bryan D. Smith; Subha Vogeti; Thomas J. Rutkoski; Scott C. Wise; Lawrence Chun; Youyan Zhang; Robert D. Van Horn; Tinggui Yin; Xiaoyi Zhang; Vipin Yadav; Shih-Hsun Chen; Xueqian Gong; Xiwen Ma; Yue Webster; Sean Buchanan; Igor Mochalkin; Lysiane Huber; Lisa Kays; Gregory P. Donoho; Jennie L. Walgren; Denis J. McCann; Phenil J. Patel; Ilaria Conti; Gregory D. Plowman; James J. Starling; Daniel L. Flynn

LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.


PLOS ONE | 2014

Identification of druggable cancer driver genes amplified across TCGA datasets.

Ying Chen; Jeremy McGee; Xianming Chen; Thompson N. Doman; Xueqian Gong; Youyan Zhang; Nicole Hamm; Xiwen Ma; Richard E. Higgs; Shripad V. Bhagwat; Sean Buchanan; Sheng-Bin Peng; Kirk A. Staschke; Vipin Yadav; Yong Yue; Hosein Kouros-Mehr

The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 14 cancer subtypes and identified 461 genes that were amplified in two or more datasets. The list was narrowed to 73 cancer-associated genes with potential “druggable” properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 40 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 40 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapter GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications for existing cancer drug targets and we further discuss potential novel opportunities for drug discovery efforts.


Oncotarget | 2017

Preclinical characterization of abemaciclib in hormone receptor positive breast cancer

Raquel Torres-Guzmán; Bruna Calsina; Ana Hermoso; Carmen Baquero; Beatriz Alvarez; Joaquín Amat; Ann M. McNulty; Xueqian Gong; Karsten Boehnke; Jian Du; Alfonso De Dios; Richard P. Beckmann; Sean Buchanan; María José Lallena

Abemaciclib is an ATP-competitive, reversible kinase inhibitor selective for CDK4 and CDK6 that has shown antitumor activity as a single agent in hormone receptor positive (HR+) metastatic breast cancer in clinical trials. Here, we examined the mechanistic effects of abemaciclib treatment using in vitro and in vivo breast cancer models. Treatment of estrogen receptor positive (ER+) breast cancer cells with abemaciclib alone led to a decrease in phosphorylation of Rb, arrest at G1, and a decrease in cell proliferation. Moreover, abemaciclib exposure led to durable inhibition of pRb, TopoIIα expression and DNA synthesis, which were maintained after drug removal. Treatment of ER+ breast cancer cells also led to a senescence response as indicated by accumulation of β-galactosidase, formation of senescence-associated heterochromatin foci, and a decrease in FOXM1 positive cells. Continuous exposure to abemaciclib altered breast cancer cell metabolism and induced apoptosis. In a xenograft model of ER+ breast cancer, abemaciclib monotherapy caused regression of tumor growth. Overall these data indicate that abemaciclib is a CDK4 and CDK6 inhibitor that, as a single agent, blocks breast cancer cell progression, and upon longer treatment can lead to sustained antitumor effects through the induction of senescence, apoptosis, and alteration of cellular metabolism.Abemaciclib is an ATP-competitive, reversible kinase inhibitor selective for CDK4 and CDK6 that has shown antitumor activity as a single agent in hormone receptor positive (HR+) metastatic breast cancer in clinical trials. Here, we examined the mechanistic effects of abemaciclib treatment using in vitro and in vivo breast cancer models. Treatment of estrogen receptor positive (ER+) breast cancer cells with abemaciclib alone led to a decrease in phosphorylation of Rb, arrest at G1, and a decrease in cell proliferation. Moreover, abemaciclib exposure led to durable inhibition of pRb, TopoIIα expression and DNA synthesis, which were maintained after drug removal. Treatment of ER+ breast cancer cells also led to a senescence response as indicated by accumulation of β-galactosidase, formation of senescence-associated heterochromatin foci, and a decrease in FOXM1 positive cells. Continuous exposure to abemaciclib altered breast cancer cell metabolism and induced apoptosis. In a xenograft model of ER+ breast cancer, abemaciclib monotherapy caused regression of tumor growth. Overall these data indicate that abemaciclib is a CDK4 and CDK6 inhibitor that, as a single agent, blocks breast cancer cell progression, and upon longer treatment can lead to sustained antitumor effects through the induction of senescence, apoptosis, and alteration of cellular metabolism.


Cancer Research | 2017

Abstract 4973: Discovery of LY3214996, a selective and novel ERK1/2 inhibitor with potent antitumor activities in cancer models with MAPK pathway alterations

Shripad V. Bhagwat; William Thomas Mcmillen; Shufen Cai; Baohui Zhao; Matthew Whitesell; Lisa Kindler; Robert Flack; Wenjuan Wu; Karen L. Huss; Bryan D. Anderson; Xiu-Juan Yuan; Susan Jaken; Denis J. McCann; Brian Michael Mathes; Andrew J. Dropsey; Jason Manro; Jennie L. Walgren; Eunice Yuen; Xueqian Gong; Michael J. Rodriguez; Jianping Huang; Ramon V. Tiu; Sajan Joseph; Sheng-Bin Peng

The RAS/MAPK pathway is dysregulated in approximately 30% of human cancers, and the extracellular-signal-regulated kinases (ERK1 and ERK2) serves as key central nodes within this pathway. The feasibility and clinical impact of targeting the RAS/MAPK pathway has been demonstrated by the therapeutic success of BRAF and MEK inhibitors in BRAF V600E/K metastatic melanoma. However, resistance develops frequently through reactivation of the pathway. Therefore, simultaneous targeting of multiple effectors such as RAF, MEK and ERK in this pathway, offers a potential for enhanced efficacy while delaying and overcoming resistance. LY3214996 is a highly selective inhibitor of ERK1 and ERK2, with IC50 of 5 nM for both enzymes in biochemical assays. It potently inhibits cellular phospho-RSK1 in BRAF and RAS mutant cancer cell lines. In an unbiased tumor cell panel sensitivity profiling for inhibition of cell proliferation, tumor cells with MAPK pathway alterations including BRAF, NRAS or KRAS mutation are generally sensitivity to LY3214996. In tumor xenograft models, LY3214996 inhibits PD biomarker phospho-p90RSK1 in tumors and the PD effects are correlated with compound exposures and anti-tumor activities. LY3214996 shows either similar or superior anti-tumor activity as compared to other published ERK inhibitors in BRAF or RAS mutant cell lines and xenograft models. Oral administration of single-agent LY3214996 significantly inhibits tumor growth in vivo and is well tolerated in BRAF or NRAS mutant melanoma, BRAF or KRAS mutant colorectal, lung and pancreatic cancer xenografts or PDX models. Therefore, LY3214996 can be tailored for treatment of cancers with MAPK pathway alteration. In addition, LY3214996 has anti-tumor activity in a vemurafenib-resistant A375 melanoma xenograft model due to MAPK reactivation, may have potential for treatment of melanoma patients who have failed BRAF therapies. More importantly, LY3214996 can be combined with investigational and approved agents in preclinical models, particularly KRAS mutant models. Combination treatment of LY3214996 and CDK4/6 inhibitor abemaciclib was well tolerated and results in potent tumor growth inhibition or regression in multiple in vivo cancer models, including KRAS mutant colorectal and non-small cell lung cancers. Here, we first report the preclinical characterization of LY3214996, a novel small molecule ERK1/2 inhibitor currently in Phase I clinical trials in patients with advanced and metastatic cancers (NCT02857270). Citation Format: Shripad V. Bhagwat, William T. McMillen, Shufen Cai, Baohui Zhao, Matthew Whitesell, Lisa Kindler, Robert S. Flack, Wenjuan Wu, Karen Huss, Bryan Anderson, Xiu-Juan Yuan, Susan Jaken, Denis McCann, Brian Mathes, Andrew J. Dropsey, Jason Manro, Jennie Walgren, Eunice Yuen, Xueqian Gong, Michael J. Rodriguez, Jianping Huang, Ramon V. Tiu, Sajan Joseph, Sheng-Bin Peng. Discovery of LY3214996, a selective and novel ERK1/2 inhibitor with potent antitumor activities in cancer models with MAPK pathway alterations [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4973. doi:10.1158/1538-7445.AM2017-4973


Oncogene | 2018

RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1

S-H Chen; Xueqian Gong; Youyan Zhang; R D Van Horn; Tinggui Yin; Lysiane Huber; Teresa F. Burke; J Manro; Philip W. Iversen; Wenjuan Wu; Shripad V. Bhagwat; Richard P. Beckmann; Ramon V. Tiu; Sean Buchanan; S-B Peng

KRAS, NRAS and BRAF mutations are among the most important oncogenic drivers in many major cancer types, such as melanoma, lung, colorectal and pancreatic cancer. There is currently no effective therapy for the treatment of RAS mutant cancers. LY3009120, a pan-RAF and RAF dimer inhibitor advanced to clinical study has been shown to inhibit both RAS and BRAF mutant cell proliferation in vitro and xenograft tumor growth in vivo. Abemaciclib, a CDK4/6-selective inhibitor, is currently in phase III studies for ER-positive breast cancer and KRAS mutant lung cancer. In this study, we found that combinatory treatment with LY3009120 and abemaciclib synergistically inhibited proliferation of tumor cells in vitro and led to tumor growth regression in xenograft models with a KRAS, NRAS or BRAF mutation at the doses of two drugs that were well tolerated in combination. Further in vitro screen in 328 tumor cell lines revealed that tumor cells with KRAS, NRAS or BRAF mutation, or cyclin D activation are more sensitive, whereas tumor cells with PTEN, PIK3CA, PIK3R1 or retinoblastoma (Rb) mutation are more resistant to this combination treatment. Molecular analysis revealed that abemaciclib alone inhibited Rb phosphorylation partially and caused an increase of cyclin D1. The combinatory treatment cooperatively demonstrated more complete inhibition of Rb phosphorylation, and LY3009120 suppressed the cyclin D1 upregulation mediated by abemaciclib. These results were further verified by CDK4/6 siRNA knockdown. Importantly, the more complete phospho-Rb inhibition and cyclin D1 suppression by LY3009120 and abemaciclib combination led to more significant cell cycle G0/G1 arrest of tumor cells. These preclinical findings suggest that combined inhibition of RAF and d-cyclin-dependent kinases might provide an effective approach to treat patients with tumors harboring mutations in RAS or RAF genes.


Cancer Research | 2015

Abstract 3101: In-vitro characterization of Abemaciclib pharmacology in ER+ breast cancer cell lines

María José Lallena; Karsten Boehnke; Raquel Torres; Ana Hermoso; Joaquín Amat; Bruna Calsina; Alfonso De Dios; Sean Buchanan; Jian Du; Richard P. Beckmann; Xueqian Gong; Ann M. McNulty

Dysregulation of the cell-cycle is a hallmark of cancer and genetic alterations in its regulatory machinery (or checkpoints) occur in most human tumors. The majority these defects are found in genes encoding for proteins regulating G1 phase progression, such as Rb, E2F1, CyclinD1, CDK4 and CDK6. Aberrant regulation of the G1 kinases CDK4 and CDK6, as well as overexpression or gene amplification of CyclinD, lead to inhibition of tumor suppressors such as Rb resulting in an accelerated cell cycle progression. Alterations in the CyclinD-CDK4/6-Rb pathway are common in breast cancer. Amplification of CCND1 gene encoding CyclinD1, occurs in 15% to 20% of breast cancers, and CyclinD1 overexpression is even more common (up to 50% of breast cancers). Abemaciclib is a reversible, ATP competitive, kinase inhibitor selective for CDK4 and CDK6 that has been shown to prevent growth of malignant cells in-vitro and in-vivo. This antitumor activity is mediated by inhibiting the phosphorylation of Rb and subsequent blockade of tumor cell cycle progression through G1/S. CDK4/6 inhibitors in general have shown significant potential for the treatment of metastatic breast cancer and Abemaciclib, in particular, is currently being evaluated in advanced clinical trials (Phase II as single agent and Phase III in combination with anti-hormone therapy) in hormone receptor positive metastatic breast cancer patients. The goal of this study was to investigate the mechanism of action of Abemaciclib in ER+ luminal breast cancer. We have evaluated the response of the drug in a diversity of breast cancer cell lines. Phenotypic characterization of sensitive cell lines was carried out by monitoring proliferation, cell cycle progression and phosphorylation of Rb using High Content Imaging. Senescence markers were included in the study to monitor the final outcome of the cells upon sustained exposure to the drug. Luminal ER+ breast cancer cells showed a marked sensitivity to treatment with Abemaciclib with IC50 values ranging from 5nM to 2uM. Simultaneous decrease in Rb phosphorylation with sustained accumulation of the 2N subpopulation was observed. Associated to the G1S arrest phenotype, Abemaciclib treatment resulted in a decrease of cell proliferation markers (Ki67 and BrdU). Additionally, a marked hyper-methylation profile (Histone H3K9met3) and a decrease of FOXM1 expression were observed, as well as an accumulation of endogenous beta-galactosidase and p21. Taken together this profile suggests that Abemaciclib acts through promotion of senescence in breast cancer cells. Abemaciclib prevents proliferation of breast cancer cell lines expressing D-types cyclins by promoting cell cycle arrest mediated by inhibition of Rb phosphorylation. Abemaciclib is a CDK4/6 inhibitor with potential to treat breast cancer by blocking cell proliferation leading to induction of senescence. Citation Format: Maria Jose Lallena, Karsten Boehnke, Raquel Torres, Ana Hermoso, Joaquin Amat, Bruna Calsina, Alfonso De Dios, Sean Buchanan, Jian Du, Richard Paul Beckmann, Xueqian Gong, Ann Mcnulty. In-vitro characterization of Abemaciclib pharmacology in ER+ breast cancer cell lines. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3101. doi:10.1158/1538-7445.AM2015-3101


Molecular Cancer Therapeutics | 2017

Discovery of a Highly Selective NAMPT Inhibitor That Demonstrates Robust Efficacy and Improved Retinal Toxicity with Nicotinic Acid Coadministration

Genshi Zhao; Colin Green; Yu-Hua Hui; Lourdes Prieto; Robert L. Shepard; Sucai Dong; Tao Wang; Bo Tan; Xueqian Gong; Lisa Kays; Robert L. Johnson; Wenjuan Wu; Shobha N. Bhattachar; Miriam del Prado; James Ronald Gillig; Maria-Carmen Fernandez; Ken D. Roth; Sean Buchanan; Ming-Shang Kuo; Sandaruwan Geeganage; Timothy Paul Burkholder

NAMPT, an enzyme essential for NAD+ biosynthesis, has been extensively studied as an anticancer target for developing potential novel therapeutics. Several NAMPT inhibitors have been discovered, some of which have been subjected to clinical investigations. Yet, the on-target hematological and retinal toxicities have hampered their clinical development. In this study, we report the discovery of a unique NAMPT inhibitor, LSN3154567. This molecule is highly selective and has a potent and broad spectrum of anticancer activity. Its inhibitory activity can be rescued with nicotinic acid (NA) against the cell lines proficient, but not those deficient in NAPRT1, essential for converting NA to NAD+. LSN3154567 also exhibits robust efficacy in multiple tumor models deficient in NAPRT1. Importantly, this molecule when coadministered with NA does not cause observable retinal and hematological toxicities in the rodents, yet still retains robust efficacy. Thus, LSN3154567 has the potential to be further developed clinically into a novel cancer therapeutic. Mol Cancer Ther; 16(12); 2677–88. ©2017 AACR.


Clinical Cancer Research | 2018

Abemaciclib is Active in Preclinical Models of Ewing's Sarcoma via Multi-pronged Regulation of Cell Cycle, DNA Methylation, and Interferon Pathway Signaling

Michele Dowless; Caitlin D. Lowery; Terry J Shackleford; Matthew Renschler; Jennifer R. Stephens; Robert Flack; Wayne Blosser; Simone Gupta; Julie Stewart; Yue Webster; Jack Dempsey; Alle VanWye; Philip J. Ebert; Philip W. Iversen; Jonathan B. Olsen; Xueqian Gong; Sean Buchanan; Peter J. Houghton; Louis Stancato

Purpose: Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The EWS/ETS fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES. Experimental Design: Using Western blot, high-content imaging, flow cytometry, ELISA, RNA sequencing, and CpG methylation assays, we characterized the in vitro response of ES cell lines to abemaciclib. We then evaluated abemaciclib in vivo in cell line–derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models of ES as either a monotherapy or in combination with chemotherapy. Results: Abemaciclib induced quiescence in ES cell lines via a G1 cell-cycle block, characterized by decreased proliferation and reduction of Ki-67 and FOXM1 expression and retinoblastoma protein (RB) phosphorylation. In addition, abemaciclib reduced DNMT1 expression and promoted an inflammatory immune response as measured by cytokine secretion, antigen presentation, and interferon pathway upregulation. Single-agent abemaciclib reduced ES tumor volume in preclinical mouse models and, when given in combination with doxorubicin or temozolomide plus irinotecan, durable disease control was observed. Conclusions: Collectively, our data demonstrate that the antitumor effects of abemaciclib in preclinical ES models are multifaceted and include cell-cycle inhibition, DNA demethylation, and immunogenic changes.


Cancer Research | 2017

Abstract 3231: Identifying high quality, potent and selective pyrimidinylthienopyrrolone inhibitors of ERK1/2 kinase: LY3214996

Gaiying Zhao; William Thomas Mcmillen; Shufen Cai; Baohui Zhao; Matthew Whitesell; Wenjuan Wu; Karen L. Huss; Bryan D. Anderson; Xiu-Juan Yuan; Susan Jaken; Lisa Kindler; Robert Flack; Denis J. McCann; Brian Michael Mathes; Andrew J. Dropsey; Jennie L. Walgren; Eunice Yuen; Jason Manro; Xueqian Gong; Guillermo S. Cortez; Johnathan Alexander Mclean; Michael J. Rodriguez; Ramon V. Tiu; Shripad V. Bhagwat; Sajan Joseph

The ERK/MAPK pathway plays a central role in the regulation of critical cellular processes and is activated in more than 30% of human cancers. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. ERK inhibitors have the potential to address resistance caused by ERK reactivation. Herein, a potent, selective small molecule ERK1/2 inhibitor is described. LY3214996 possesses an optimal balance of potency (hERK1 IC50 5 nM, hERK2 IC50 5nM, pRSK IC50 0.43 µM), solubility (FaSSIF solubility at pH 6.5 0.133 µM), PK properties (dog, AUCoral 23800 nM*hr, CL 12.1 mL/min/kg, bioavailability 75.4%), IVTI (TED50 =16 mg/kg pRSK1) and demonstrated significant in vivo efficacy in several human cancer xenograft models. LY3214996 is currently undergoing early clinical evaluation. Citation Format: Gaiying Zhao, William T. McMillen, Shufen Cai, Baohui Zhao, Matthew Whitesell, Wenjuan Wu, Karen Huss, Bryan Anderson, Xiu-Juan Yuan, Susan Jaken, Lisa Kindler, Robert S. Flack, Denis McCann, Brian Mathes, Andrew J. Dropsey, Jennie Walgren, Eunice Yuen, Jason Manro, Xueqian Gong, Guillermo Cortez, Johnathan McLean, Michael J. Rodriguez, Ramon V. Tiu, Shripad V. Bhagwat, Sajan Joseph. Identifying high quality, potent and selective pyrimidinylthienopyrrolone inhibitors of ERK1/2 kinase: LY3214996 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3231. doi:10.1158/1538-7445.AM2017-3231

Collaboration


Dive into the Xueqian Gong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge