Xueqing Zou
University of Illinois at Urbana–Champaign
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xueqing Zou.
ACS Nano | 2011
Chaitanya Sathe; Xueqing Zou; Jean Pierre Leburton; Klaus Schulten
Nanopore-based single-molecule detection and analysis have been pursued intensively over the past decade. One of the most promising applications in this regard is DNA sequencing achieved through DNA translocation-induced blockades in ionic current. Recently, nanopores fabricated in graphene sheets were used to detect double-stranded DNA. Due to its subnanometer thickness, graphene nanopores show great potential to realize DNA sequencing at single-base resolution. Resolving at the atomic level electric field-driven DNA translocation through graphene nanopores is crucial to guide the design of graphene-based sequencing devices. Molecular dynamics simulations, in principle, can achieve such resolution and are employed here to investigate the effects of applied voltage, DNA conformation, and sequence as well as pore charge on the translocation characteristics of DNA. We demonstrate that such simulations yield current characteristics consistent with recent measurements and suggest that under suitable bias conditions A-T and G-C base pairs can be discriminated using graphene nanopores.
Scientific Reports | 2013
Jiwook Shim; Gwendolyn I. Humphreys; Bala Murali Venkatesan; Jan Marie Munz; Xueqing Zou; Chaitanya Sathe; Klaus Schulten; Farhad Kosari; Ann M. Nardulli; George Vasmatzis; Rashid Bashir
Epigenetic modifications in eukaryotic genomes occur primarily in the form of 5-methylcytosine (5 mC). These modifications are heavily involved in transcriptional repression, gene regulation, development and the progression of diseases including cancer. We report a new single-molecule assay for the detection of DNA methylation using solid-state nanopores. Methylation is detected by selectively labeling methylation sites with MBD1 (MBD-1x) proteins, the complex inducing a 3 fold increase in ionic blockage current relative to unmethylated DNA. Furthermore, the discrimination of methylated and unmethylated DNA is demonstrated in the presence of only a single bound protein, thereby giving a resolution of a single methylated CpG dinucleotide. The extent of methylation of a target molecule could also be coarsely quantified using this novel approach. This nanopore-based methylation sensitive assay circumvents the need for bisulfite conversion, fluorescent labeling, and PCR and could therefore prove very useful in studying the role of epigenetics in human disease.
Nucleic Acids Research | 2011
Philip M. D. Severin; Xueqing Zou; Hermann E. Gaub; Klaus Schulten
DNA methylation plays an essential role in transcriptional control of organismal development in epigenetics, from turning off a specific gene to inactivation of entire chromosomes. While the biological function of DNA methylation is becoming increasingly clear, the mechanism of methylation-induced gene regulation is still poorly understood. Through single-molecule force experiments and simulation we investigated the effects of methylation on strand separation of DNA, a crucial step in gene expression. Molecular force assay and single-molecule force spectroscopy revealed a strong methylation dependence of strand separation. Methylation is observed to either inhibit or facilitate strand separation, depending on methylation level and sequence context. Molecular dynamics simulations provided a detailed view of methylation effects on strand separation, suggesting the underlying physical mechanism. According to our study, methylation in epigenetics may regulate gene expression not only through mechanisms already known but also through changing mechanical properties of DNA.
Nucleic Acids Research | 2012
Xueqing Zou; Wen-Xiang Ma; Ilia A. Solov'yov; Christophe Chipot; Klaus Schulten
DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD–mDNA interface by two MBD arginines through an interplay of hydrogen bonding and cation-π interaction. Through molecular dynamics and quantum-chemistry calculations we investigate the methyl-cytosine recognition process and demonstrate that methylation enhances MBD–mDNA binding by increasing the hydrophobic interfacial area and by strengthening the interaction between mDNA and MBD proteins. Free-energy perturbation calculations also show that methylation yields favorable contribution to the binding free energy for MBD–mDNA complex.
Biophysical Journal | 2009
Utkur Mirsaidov; Winston Timp; Xueqing Zou; V. Dimitrov; Klaus Schulten; Andrew P. Feinberg; G. Timp
Methylation of cytosine is a covalent modification of DNA that can be used to silence genes, orchestrating a myriad of biological processes including cancer. We have discovered that a synthetic nanopore in a membrane comparable in thickness to a protein binding site can be used to detect methylation. We observe a voltage threshold for permeation of methylated DNA through a <2 nm diameter pore, which we attribute to the stretching transition; this can differ by >1 V/20 nm depending on the methylation level, but not the DNA sequence.
Journal of Biological Chemistry | 2012
Martin van Eijk; Michael J. Rynkiewicz; Mitchell R. White; Kevan L. Hartshorn; Xueqing Zou; Klaus Schulten; Dong Luo; Erika C. Crouch; Tanya R. Cafarella; James F. Head; Henk P. Haagsman; Barbara Seaton
Background: Innate immune protein surfactant protein D (SP-D) helps to protect against influenza A virus (IAV) infection. Results: In pigs, this protein exhibits a unique sugar-binding site in its carbohydrate recognition domain. Conclusion: Distinct interactions with viral mannose-rich glycans contribute to the profound antiviral activity of porcine SP-D. Significance: These findings could help explain why pigs serve as mixing vessels for IAV. Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains.
Biophysical Journal | 2010
Xueqing Zou; Yanxin Liu; Zhongzhou Chen; Gloria I. Cárdenas-Jirón; Klaus Schulten
Flow-induced shear has been identified as a regulatory driving force in blood clotting. Shear induces beta-hairpin folding of the glycoprotein Ibalpha beta-switch which increases affinity for binding to the von Willebrand factor, a key step in blood clot formation and wound healing. Through 2.1-micros molecular dynamics simulations, we investigate the kinetics of flow-induced beta-hairpin folding. Simulations sampling different flow velocities reveal that under flow, beta-hairpin folding is initiated by hydrophobic collapse, followed by interstrand hydrogen-bond formation and turn formation. Adaptive biasing force simulations are employed to determine the free energy required for extending the unfolded beta-switch from a loop to an elongated state. Lattice and freely jointed chain models illustrate how the folding rate depends on the entropic and enthalpic energy, the latter controlled by flow. The results reveal that the free energy landscape of the beta-switch has two stable conformations imprinted on it, namely, loop and hairpin--with flow inducing a transition between the two.
Nucleic Acids Research | 2013
Markita P. Landry; Xueqing Zou; Lei Wang; Wai Mun Huang; Klaus Schulten; Yann R. Chemla
Sequence-specific DNA-binding proteins must quickly and reliably localize specific target sites on DNA. This search process has been well characterized for monomeric proteins, but it remains poorly understood for systems that require assembly into dimers or oligomers at the target site. We present a single-molecule study of the target-search mechanism of protelomerase TelK, a recombinase-like protein that is only active as a dimer. We show that TelK undergoes 1D diffusion on non-target DNA as a monomer, and it immobilizes upon dimerization even in the absence of a DNA target site. We further show that dimeric TelK condenses non-target DNA, forming a tightly bound nucleoprotein complex. Together with theoretical calculations and molecular dynamics simulations, we present a novel target-search model for TelK, which may be generalizable to other dimer and oligomer-active proteins.
Archive | 2011
G. Timp; Utkur Mirsaidov; Winston Timp; Jiwook Shim; Deqiang Wang; V. Dimitrov; Jan Scrimgeour; Chunchen Lin; Jeffrey Comer; Anthony Ho; Xueqing Zou; Aleksei Aksimentiev; Klaus Schulten
With the advent of Next-Generation-Sequencing (NGS) technologies, an enormous volume of DNA sequencing data can be generated at low cost, placing genomic science within the grasp of everyday medicine. However, mired in this voluminous data, a new problem has emerged: the assembly of the genome from the short reads. In this chapter we examine the prospects for sequencing DNA using a synthetic nanopore. Nanopore sequencing has the potential for very long reads, reducing the computational burden posed by alignment and genome assembly, while at the same time eliminating logistically challenging and error-prone amplification and library formation due to its exquisite single molecule sensitivity. On the other hand, long high fidelity reads demand stringent control over both the DNA configuration in the pore and the translocation kinetics. We examine the prospects for satisfying these specifications with a synthetic nanopore.
Biophysical Journal | 2013
Philip M. D. Severin; Xueqing Zou; Klaus Schulten; Hermann E. Gaub