Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuequan Lu is active.

Publication


Featured researches published by Xuequan Lu.


Nature | 2010

Active site remodelling accompanies thioester bond formation in the SUMO E1.

Shaun K. Olsen; Allan D. Capili; Xuequan Lu; Derek S. Tan; Christopher D. Lima

E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 Å, respectively. These structures show that side chain contacts to ATP·Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.


Journal of Biological Chemistry | 2009

FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells.

Evgeny Berdyshev; Irina Gorshkova; Anastasia Skobeleva; Robert Bittman; Xuequan Lu; Steven M. Dudek; Tamara Mirzapoiazova; Joe G. N. Garcia; Viswanathan Natarajan

Novel immunomodulatory molecule FTY720 is a synthetic analog of myriocin, but unlike myriocin FTY720 does not inhibit serine palmitoyltransferase. Although many of the effects of FTY720 are ascribed to its phosphorylation and subsequent sphingosine 1-phosphate (S1P)-like action through S1P1,3–5 receptors, studies on modulation of intracellular balance of signaling sphingolipids by FTY720 are limited. In this study, we used stable isotope pulse labeling of human pulmonary artery endothelial cells with l-[U-13C, 15N]serine as well as in vitro enzymatic assays and liquid chromatography-tandem mass spectrometry methodology to characterize FTY720 interference with sphingolipid de novo biosynthesis. In human pulmonary artery endothelial cells, FTY720 inhibited ceramide synthases, resulting in decreased cellular levels of dihydroceramides, ceramides, sphingosine, and S1P but increased levels of dihydrosphingosine and dihydrosphingosine 1-phosphate (DHS1P). The FTY720-induced modulation of sphingolipid de novo biosynthesis was similar to that of fumonisin B1, a classical inhibitor of ceramide synthases, but differed in the efficiency to inhibit biosynthesis of short-chain versus long-chain ceramides. In vitro kinetic studies revealed that FTY720 is a competitive inhibitor of ceramide synthase 2 toward dihydrosphingosine with an apparent Ki of 2.15 μm. FTY720-induced up-regulation of DHS1P level was mediated by sphingosine kinase (SphK) 1, but not SphK2, as confirmed by experiments using SphK1/2 silencing with small interfering RNA. Our data demonstrate for the first time the ability of FTY720 to inhibit ceramide synthases and modulate the intracellular balance of signaling sphingolipids. These findings open a novel direction for therapeutic applications of FTY720 that focuses on inhibition of ceramide biosynthesis, ceramide-dependent signaling, and the up-regulation of DHS1P generation in cells.


Journal of Biological Chemistry | 2011

FTY720 Analogues as Sphingosine Kinase 1 Inhibitors ENZYME INHIBITION KINETICS, ALLOSTERISM, PROTEASOMAL DEGRADATION, AND ACTIN REARRANGEMENT IN MCF-7 BREAST CANCER CELLS

Keng Gat Lim; Francesca Tonelli; Zaiguo Li; Xuequan Lu; Robert Bittman; Susan Pyne; Nigel J. Pyne

Sphingosine kinase 1 (SK1) catalyzes the conversion of sphingosine to the bioactive lipid sphingosine 1-phosphate. We have previously demonstrated that FTY720 and (S)-FTY720 vinylphosphonate are novel inhibitors of SK1 activity. Here, we show that (S)-FTY720 vinylphosphonate binds to a putative allosteric site in SK1 contingent on formation of the enzyme-sphingosine complex. We report that SK1 is an oligomeric protein (minimally a dimer) containing noncooperative catalytic sites and that the allosteric site exerts an autoinhibition of the catalytic site. A model is proposed in which (S)-FTY720 vinylphosphonate binding to and stabilization of the allosteric site might enhance the autoinhibitory effect on SK1 activity. Further evidence for the existence of allosteric site(s) in SK1 was demonstrated by data showing that two new FTY720 analogues (a conjugate of sphingosine with a fluorophore and (S)-FTY720 regioisomer) increased SK1 activity, suggesting relief of autoinhibition of SK1 activity. Comparisons with the SK1 inhibitor, SKi or siRNA knockdown of SK1 indicated that (S)-FTY720 vinylphosphonate and FTY720 behave as typical SK1 inhibitors in preventing sphingosine 1-phosphate-stimulated rearrangement of actin in MCF-7 cells. These findings are discussed in relation to the anticancer properties of SK1 inhibitors.


Journal of Biological Chemistry | 2009

Ceramide Synthesis Is Modulated by the Sphingosine Analog FTY720 via a Mixture of Uncompetitive and Noncompetitive Inhibition in an Acyl-CoA Chain Length-dependent Manner

Sujoy Lahiri; Hyejung Park; Elad L. Laviad; Xuequan Lu; Robert Bittman; Anthony H. Futerman

FTY720, a sphingosine analog, is in clinical trials as an immunomodulator. The biological effects of FTY720 are believed to occur after its metabolism to FTY720 phosphate. However, very little is known about whether FTY720 can interact with and modulate the activity of other enzymes of sphingolipid metabolism. We examined the ability of FTY720 to modulate de novo ceramide synthesis. In mammals, ceramide is synthesized by a family of six ceramide synthases, each of which utilizes a restricted subset of acyl-CoAs. We show that FTY720 inhibits ceramide synthase activity in vitro by noncompetitive inhibition toward acyl-CoA and uncompetitive inhibition toward sphinganine; surprisingly, the efficacy of inhibition depends on the acyl-CoA chain length. In cultured cells, FTY720 has a more complex effect, with ceramide synthesis inhibited at high (500 nm to 5 μm) but not low (<200 nm) sphinganine concentrations, consistent with FTY720 acting as an uncompetitive inhibitor toward sphinganine. Finally, electrospray ionization-tandem mass spectrometry demonstrated, unexpectedly, elevated levels of ceramide, sphingomyelin, and hexosylceramides after incubation with FTY720. Our data suggest a novel mechanism by which FTY720 might mediate some of its biological effects, which may be of mechanistic significance for understanding its mode of action.


Bioorganic & Medicinal Chemistry Letters | 2008

Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis ☆

Xuequan Lu; Huaning Zhang; Peter J. Tonge; Derek S. Tan

Menaquinone (vitamin K(2)) is an essential component of the electron transfer chain in many pathogens, including Mycobacterium tuberculosis and Staphylococcus aureus, and menaquinone biosynthesis is a potential target for antibiotic drug discovery. We report herein a series of mechanism-based inhibitors of MenE, an acyl-CoA synthetase that catalyzes adenylation and thioesterification of o-succinylbenzoic acid (OSB) during menaquinone biosynthesis. The most potent compound inhibits MenE with an IC(50) value of 5.7microM.


Cellular Signalling | 2010

(S)-FTY720-vinylphosphonate, an analogue of the immunosuppressive agent FTY720, is a pan-antagonist of sphingosine 1-phosphate GPCR signaling and inhibits autotaxin activity.

William J. Valentine; Gyöngyi N. Kiss; Jianxiong Liu; E Shuyu; Mari Gotoh; Kimiko Murakami-Murofushi; Truc Chi T. Pham; Daniel L. Baker; Xuequan Lu; Chaode Sun; Robert Bittman; Nigel J. Pyne; Gabor Tigyi

FTY720 (Fingolimod), a synthetic analogue of sphingosine 1-phosphate (S1P), activates four of the five EDG-family S1P receptors and is in a phase-III clinical study for the treatment of multiple sclerosis. (S)-FTY720-phosphate (FTY720-P) causes S1P(1) receptor internalization and targeting to the proteasomal degradative pathway, and thus functions as an antagonist of S1P(1) by depleting the functional S1P(1) receptor from the plasma membrane. Here we describe the pharmacological characterization of two unsaturated phosphonate enantiomers of FTY720, (R)- and (S)-FTY720-vinylphosphonate. (R)-FTY720-vinylphosphonate was a full agonist of S1P(1) (EC(50) 20+/-3 nM). In contrast, the (S) enantiomer failed to activate any of the five S1P GPCRs and was a full antagonist of S1P(1,3,4) (K(i) 384 nM, 39 nM, and 1190 nM, respectively) and a partial antagonist of S1P(2), and S1P(5). Both enantiomers dose-dependently inhibited lysophospholipase D (recombinant autotaxin) with K(i) values in the low micromolar range, although with different enzyme kinetic mechanisms. When injected into mice, both enantiomers caused transient peripheral lymphopenia. (R)- and (S)-FTY720-vinylphosphonates activated ERK1/2, AKT, and exerted an antiapoptotic effect in camptothecin-treated IEC-6 intestinal epithelial cells, which primarily express S1P(2) transcripts and traces of S1P(5). (S)-FTY720-vinylphosphonate is the first pan-antagonist of S1P receptors and offers utility in probing S1P responses in vitro and in vivo. The biological effects of the (R)- and (S)-FTY720-vinylphosphonate analogues underscore the complexity of FTY720 cellular targets.


Journal of Pharmacology and Experimental Therapeutics | 2009

Synthetic Analogs of FTY720 [2-Amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] Differentially Regulate Pulmonary Vascular Permeability in Vivo and in Vitro

Sara M. Camp; Robert Bittman; Eddie T. Chiang; Liliana Moreno-Vinasco; Tamara Mirzapoiazova; Saad Sammani; Xuequan Lu; Chaode Sun; Mark Harbeck; Michael W. Roe; Viswanathan Natarajan; Joe G. N. Garcia; Steven M. Dudek

Novel therapies are needed to address the vascular endothelial cell (EC) barrier disruption that occurs in inflammatory diseases such as acute lung injury (ALI). We previously demonstrated the potent barrier-enhancing effects of both sphingosine 1-phosphate (S1P) and the structurally similar compound FTY720 [2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] in inflammatory lung injury. In this study, we examined the therapeutic potential of several novel FTY720 analogs to reduce vascular leak. Similar to S1P and FTY720, the (R)- and (S)-enantiomers of FTY720 phosphonate and enephosphonate analogs produce sustained EC barrier enhancement in vitro, as seen by increases in transendothelial electrical resistance (TER). In contrast, the (R)- and (S)-enantiomers of FTY720-regioisomeric analogs disrupt EC barrier integrity in a dose-dependent manner. Barrier-enhancing FTY720 analogs demonstrate a wider protective concentration range in vitro (1–50 μM) and greater potency than either S1P or FTY720. In contrast to FTY720-induced EC barrier enhancement, S1P and the FTY720 analogs dramatically increase TER within minutes in association with cortical actin ring formation. Unlike S1P, these FTY720 analogs exhibit differential phosphorylation effects without altering the intracellular calcium level. Inhibitor studies indicate that barrier enhancement by these analogs involves signaling via Gi-coupled receptors, tyrosine kinases, and lipid rafts. Consistent with these in vitro responses, the (S)-phosphonate analog of FTY720 significantly reduces multiple indices of alveolar and vascular permeability in a lipopolysaccharide-mediated murine model of ALI (without significant alterations in leukocyte counts). These results demonstrate the capacity for FTY720 analogs to significantly decrease pulmonary vascular leakage and inflammation in vitro and in vivo.


Journal of the American Chemical Society | 2010

Designed Semisynthetic Protein Inhibitors of Ub/Ubl E1 Activating Enzymes

Xuequan Lu; Shaun K. Olsen; Allan D. Capili; Justin S. Cisar; Christopher D. Lima; Derek S. Tan

Semisynthetic, mechanism-based protein inhibitors of ubiquitin (Ub) and ubiquitin-like modifier (Ubl) activating enzymes (E1s) have been developed to target E1-catalyzed adenylation and thioesterification of the Ub/Ubl C-terminus during the processes of protein SUMOylation and ubiquitination. The inhibitors were generated by intein-mediated expressed protein ligation using a truncated Ub/Ubl protein (SUMO residues 1-94; Ub residues 1-71) with a C-terminal thioester and synthetic tripeptides having a C-terminal adenosine analogue and an N-terminal cysteine residue. SUMO-AMSN (4a) and Ub-AMSN (4b) contain a sulfamide group as a nonhydrolyzable mimic of the phosphate group in the cognate Ub/Ubl-AMP adenylate intermediate in the first half-reaction, and these constructs selectively inhibit SUMO E1 and Ub E1, respectively, in a dose-dependent manner. SUMO-AVSN (5a) and Ub-AVSN (5b) contain an electrophilic vinyl sulfonamide designed to trap the incoming E1 cysteine nucleophile (Uba2 Cys173 in SUMO E1; Uba1 Cys593 in Ub E1) in the second half-reaction, and these constructs selectively, covalently, and stably cross-link to SUMO E1 and Ub E1, respectively, in a cysteine nucleophile-dependent manner. These inhibitors are powerful tools to probe outstanding mechanistic questions in E1 function and can also be used to study the biological functions of E1 enzymes.


ChemBioChem | 2006

Synthesis and Evaluation of an α-C-Galactosylceramide Analogue that Induces Th1-biased Responses in Human Natural Killer T Cells

Xuequan Lu; Liping Song; Leonid S. Metelitsa; Robert Bittman

An α‐galactosylceramide (αGalCer, 1) and its isosteric C‐glycoside analogue (2) were found to possess promising immunostimulatory activity because of their ability to activate natural killer T (NKT) cells. We report the synthesis of compound 3, a truncated nonisosteric C‐αGalCer analogue, that like 2 is not enzymatically labile at the glycosidic linkage, but has the anomeric carbon directly bonded to the C1 of the phytoceramide backbone. We compared the biological activity of the three ligands using an in vitro system with human dendritic cells as the antigen‐presenting cells and human NKT cells as the responding cells. Although 3 was a less potent agonist for NKT cells than 1 and 2, it induced cytokine production with the highest IFN‐γ:IL‐4 and IFN‐γ:IL‐13 ratios. Therefore, our data suggest that the new mimetic of αGalCer might preferentially promote Th1‐immune responses and serve as a potent adjuvant in the immunotherapy of cancer and infectious diseases.


Journal of Organic Chemistry | 2009

Chiral Vinylphosphonate and Phosphonate Analogues of the Immunosuppressive Agent FTY720

Xuequan Lu; Chaode Sun; William J. Valentine; Shuyu E; Jianxiong Liu; Gabor Tigyi; Robert Bittman

The first enantioselective synthesis of chiral isosteric phosphonate analogues of FTY720 is described. One of these analogues, FTY720-(E)-vinylphosphonate (S)-5, but not its R enantiomer, elicited a potent antiapoptotic effect in intestinal epithelial cells, suggesting that it exerts its action via the enantioselective activation of a receptor. (S)-5 failed to activate the sphingosine 1-phosphate type 1 (S1P(1)) receptor.

Collaboration


Dive into the Xuequan Lu's collaboration.

Top Co-Authors

Avatar

Robert Bittman

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Derek S. Tan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chaode Sun

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Gabor Tigyi

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianxiong Liu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven M. Dudek

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viswanathan Natarajan

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge