Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuequn Chen is active.

Publication


Featured researches published by Xuequn Chen.


Journal of Proteomics | 2012

Neuronal porosome proteome: Molecular dynamics and architecture

Jin-sook Lee; Aleksandar Jeremic; Leah Shin; Won Jin Cho; Xuequn Chen; Bhanu P. Jena

Porosomes are the universal secretory portals at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to expel intravesicular contents to the outside during cell secretion. In the past decade, the neuronal porosome complex, a 10-15nm cup-shaped lipoprotein structure has been isolated, its partial composition and 3D contour map determined, and it has been functionally reconstituted into artificial lipid membrane. Here we further determine the composition of the neuronal porosome proteome using immunoisolation and gel filtration chromatography, followed by tandem mass spectrometry. Results from the study demonstrate nearly 40 proteins to constitute the neuronal porosome proteome. Furthermore, interaction of proteins within the porosome and their resulting arrangement is predicted. The association and dissociation of proteins at the porosome following stimulation of cell secretion demonstrate the dynamic nature of the organelle.


Histochemistry and Cell Biology | 2012

3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex

Sunxi Wang; Jin Sook Lee; Nicole Bishop; Aleksandar Jeremic; Won Jin Cho; Xuequn Chen; Guangzhao Mao; Douglas J. Taatjes; Bhanu P. Jena

Insights into the three-dimensional (3D) organization and function of intracellular structures at nanometer resolution, holds the key to our understanding of the molecular underpinnings of cellular structure−function. Besides this fundamental understanding of the cell at the molecular level, such insights hold great promise in identifying the disease processes by their altered molecular profiles, and help determine precise therapeutic treatments. To achieve this objective, previous studies have employed electron microscopy (EM) tomography with reasonable success. However, a major hurdle in the use of EM tomography is the tedious procedures involved in fixing, high-pressure freezing, staining, serial sectioning, imaging, and finally compiling the EM images to obtain a 3D profile of sub-cellular structures. In contrast, the resolution limit of EM tomography is several nanometers, as compared to just a single or even sub-nanometer using the atomic force microscope (AFM). Although AFM has been hugely successful in 3D imaging studies at nanometer resolution and in real time involving isolated live cellular and isolated organelles, it has had limited success in similar studies involving 3D imaging at nm resolution of intracellular structure–function in situ. In the current study, using both AFM and EM on aldehyde-fixed and semi-dry mouse pancreatic acinar cells, new insights on a number of intracellular structure–function relationships and interactions were achieved. Golgi complexes, some exhibiting vesicles in the process of budding were observed, and small vesicles were caught in the act of fusing with larger vesicles, possibly representing either secretory vesicle biogenesis or vesicle refilling following discharge, or both. These results demonstrate the power and scope of the combined engagement of EM and AFM imaging of fixed semi-dry cells, capable of providing a wealth of new information on cellular structure–function and interactions.


Micron | 2013

Aquaporin-assisted and ER-mediated mitochondrial fission: A hypothesis

Jin Sook Lee; Xia Hou; Nicole Bishop; Sunxi Wang; Amanda Flack; Won Jin Cho; Xuequn Chen; Guangzhao Mao; Douglas J. Taatjes; Fei Sun; Kezhong Zhang; Bhanu P. Jena

It is well established that the status of the endoplasmic reticulum (ER) and mitochondria, and the interactions between them, is critical to numerous cellular functions including apoptosis. Mitochondrial dynamics is greatly influenced by cell stress, and recent studies implicate ER in mitochondrial fission. Although a number of proteins have been identified to participate in ER-induced mitochondrial fission, the molecular mechanism of the process is little understood. In the current study, we confirm the involvement of ER in mitochondrial fission and hypothesize the involvement of water channels or aquaporins (AQP) in the process. Previous studies demonstrate the presence of AQP both in the ER and mitochondrial membranes. Mitochondrial swelling has been observed following mitochondrial calcium overload, and studies report that chelation of cytosolic calcium induces extensive mitochondrial division at ER contact sites. Based on this information, the involvement of ER in mitochondrial division, possibly via water channels, is hypothesized. Utilizing a multi-faceted imaging approach consisting of atomic force microscopy on aldehyde-fixed and semi-dry cells, transmission electron microscopy, and immunofluorescence microscopy on live cells, the physical interactions between the two organelles are demonstrated. Mitochondrial fission following ER stress was abrogated with exposure of cells to the AQP inhibitor mercuric chloride, suggesting the involvement of AQP(s) especially AQP8 and AQP9 known to be present in the mitochondrial membrane, in mitochondrial fission.


Diabetes | 2016

CREBH Couples Circadian Clock With Hepatic Lipid Metabolism

Ze Zheng; Hyunbae Kim; Xuequn Chen; Roberto Mendez; Aditya Dandekar; Xuebao Zhang; Chunbin Zhang; Andrew C. Liu; Lei Yin; Jiandie D. Lin; Paul D. Walker; Gregory Kapatos; Kezhong Zhang

The circadian clock orchestrates diverse physiological processes critical for health and disease. CREB, hepatocyte specific (CREBH) is a liver-enriched, endoplasmic reticulum (ER)–tethered transcription factor known to regulate the hepatic acute phase response and energy homeostasis under stress conditions. We demonstrate that CREBH is regulated by the circadian clock and functions as a circadian regulator of hepatic lipid metabolism. Proteolytic activation of CREBH in the liver exhibits typical circadian rhythmicity controlled by the core clock oscillator BMAL1 and AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway. GSK3β-mediated phosphorylation of CREBH modulates the association between CREBH and the coat protein complex II transport vesicle and thus controls the ER-to-Golgi transport and subsequent proteolytic cleavage of CREBH in a circadian manner. Functionally, CREBH regulates circadian expression of the key genes involved in triglyceride (TG) and fatty acid (FA) metabolism and is required to maintain circadian amplitudes of blood TG and FA in mice. During the circadian cycle, CREBH rhythmically regulates and interacts with the hepatic nuclear receptors peroxisome proliferator–activated receptor α and liver X receptor α as well as with the circadian oscillation activator DBP and the repressor E4BP4 to modulate CREBH transcriptional activities. In conclusion, these studies reveal that CREBH functions as a circadian-regulated liver transcriptional regulator that integrates energy metabolism with circadian rhythm.


Molecular and Cellular Biology | 2015

Lysine Acetylation of CREBH Regulates Fasting-induced Hepatic Lipid Metabolism

Hyunbae Kim; Roberto Mendez; Xuequn Chen; Deyu Fang; Kezhong Zhang

ABSTRACT Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH.


Journal of Proteomics | 2014

Proteome of the porosome complex in human airway epithelia: Interaction with the cystic fibrosis transmembrane conductance regulator (CFTR)

Xia Hou; Kenneth T. Lewis; Qingtian Wu; Sunxi Wang; Xuequn Chen; Amanda Flack; Guangzhao Mao; Douglas J. Taatjes; Fei Sun; Bhanu P. Jena

UNLABELLED The surface of the airways is coated with a thin film of mucus composed primarily of mucin, which is under continuous motion via ciliary action. Mucin not only serves to lubricate the airways epithelia, but also functions as a trap for foreign particles and pathogens, thereby assisting in keeping the airways clean and free of particulate matter and infections. Altered mucin secretion especially increased mucin viscosity, results in mucin stagnation due to the inability of the cilia to propel them, leading to infections and diseases such as cystic fibrosis (CF). Since porosomes have been demonstrated to be the secretory portals at the cell plasma membrane in cells, their presence, structure, and composition in the mucin-secreting human airway epithelial cell line Calu-3 expressing CF transmembrane receptor (CFTR), were investigated. Atomic force microscopy (AFM) of Calu-3 cells demonstrates the presence of approximately 100nm in diameter porosome openings at the plasma membrane surface. Electron microscopy confirms the AFM results, and tandem mass spectrometry and immunoanalysis performed on isolated Calu-3 porosomes, reveal the association of CFTR with the porosome complex. These new findings will facilitate understanding of CFTR-porosome interactions influencing mucous secretion, and provide critical insights into the etiology of CF disease. BIOLOGICAL SIGNIFICANCE In the present study, the porosome proteome in human airway epithelia has been determined. The interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) and the porosome complex in the human airway epithelia is further demonstrated. The possible regulation by CFTR on the quality of mucus secretion via the porosome complex at the cell plasma membrane is hypothesized. These new findings will facilitate understanding of CFTR-porosome interactions influencing mucous secretion, and provide critical insights into the etiology of CF disease.


Journal of Biological Chemistry | 2012

Toad heart utilizes exclusively slow skeletal muscle troponin T: An evolutionary adaptation with potential functional benefits

Han Zhong Feng; Xuequn Chen; M. Moazzem Hossain; Jian Ping Jin

Background: The heart of dry land toads has adapted to sustain circulation in a wide range of body fluid changes. Results: The toad cardiac muscle expresses exclusively slow skeletal troponin T with cardiac forms of other myofilament proteins and exhibits functional benefit. Conclusion: This finding reflects a novel adaptation of toad heart. Significance: The results indicate a molecular mechanism to improve systolic function. The three isoforms of vertebrate troponin T (TnT) are normally expressed in a muscle type-specific manner. Here we report an exception that the cardiac muscle of toad (Bufo) expresses exclusively slow skeletal muscle TnT (ssTnT) together with cardiac forms of troponin I and myosin as determined using immunoblotting, cDNA cloning, and/or LC-MS/MS. Using RT-PCR and 3′- and 5′-rapid amplification of cDNA ends on toad cardiac mRNA, we cloned full-length cDNAs encoding two alternatively spliced variants of ssTnT. Expression of the cloned cDNAs in Escherichia coli confirmed that the toad cardiac muscle expresses solely ssTnT, predominantly the low molecular weight variant with the exon 5-encoded NH2-terminal segment spliced out. Functional studies were performed in ex vivo working toad hearts and compared with the frog (Rana) hearts. The results showed that toad hearts had higher contractile and relaxation velocities and were able to work against a significantly higher afterload than that of frog hearts. Therefore, the unique evolutionary adaptation of utilizing exclusively ssTnT in toad cardiac muscle corresponded to a fitness value from improving systolic function of the heart. The data demonstrated a physiological importance of the functional diversity of TnT isoforms. The structure-function relationship of TnT may be explored for the development of new treatment of heart failure.


American Journal of Physiology-cell Physiology | 2016

Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers

Han Zhong Feng; Xuequn Chen; Moh H. Malek; J.-P. Jin

Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30-60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30-60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance.


Proteomics | 2015

Proteomics analysis of rough endoplasmic reticulum in pancreatic beta cells

Jin Sook Lee; Yanning Wu; Patricia Schnepp; Jingye Fang; Xuebao Zhang; Alla Karnovsky; James Woods; Paul M. Stemmer; Ming Liu; Kezhong Zhang; Xuequn Chen

Pancreatic beta cells have well‐developed ER to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by 1D SDS‐PAGE coupled with HPLC‐MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. GO analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes‐causing conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD001081 (http://proteomecentral.proteomexchange.org/dataset/PXD001081).


Molecular Endocrinology | 2015

COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis

Jingye Fang; Ming Liu; Xuebao Zhang; Takeshi Sakamoto; Douglas J. Taatjes; Bhanu P. Jena; Fei Sun; James Woods; Tim Bryson; Anjaneyulu Kowluru; Kezhong Zhang; Xuequn Chen

Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

Collaboration


Dive into the Xuequn Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Sun

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

James Woods

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Jingye Fang

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge