Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuerong Wang is active.

Publication


Featured researches published by Xuerong Wang.


Cancer Research | 2005

Activation of Akt and eIF4E Survival Pathways by Rapamycin-Mediated Mammalian Target of Rapamycin Inhibition

Shi-Yong Sun; Laura Rosenberg; Xuerong Wang; Zhongmei Zhou; Ping Yue; Haian Fu; Fadlo R. Khuri

The mammalian target of rapamycin (mTOR) has emerged as an important cancer therapeutic target. Rapamycin and its derivatives that specifically inhibit mTOR are now being actively evaluated in clinical trials. Recently, the inhibition of mTOR has been shown to reverse Akt-dependent prostate intraepithelial neoplasia. However, many cancer cells are resistant to rapamycin and its derivatives. The mechanism of this resistance remains a subject of major therapeutic significance. Here we report that the inhibition of mTOR by rapamycin triggers the activation of two survival signaling pathways that may contribute to drug resistance. Treatment of human lung cancer cells with rapamycin suppressed the phosphorylation of p70S6 kinase and 4E-BP1, indicating an inhibition of mTOR signaling. Paradoxically, rapamycin also concurrently increased the phosphorylation of both Akt and eIF4E. The rapamycin-induced phosphorylation of Akt and eIF4E was suppressed by the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002, suggesting the requirement of PI3K in this process. The activated Akt and eIF4E seem to attenuate rapamycins growth-inhibitory effects, serving as a negative feedback mechanism. In support of this model, rapamycin combined with LY294002 exhibited enhanced inhibitory effects on the growth and colony formation of cancer cells. Thus, our study provides a mechanistic basis for enhancing mTOR-targeted cancer therapy by combining an mTOR inhibitor with a PI3K or Akt inhibitor.


Cancer Research | 2009

Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy.

Lei Fu; Young-Ae Kim; Xuerong Wang; Xiaoyun Wu; Ping Yue; Sagar Lonial; Fadlo R. Khuri; Shi-Yong Sun

Perifosine is an alkylphospholipid exhibiting antitumor activity as shown in both preclinical studies and clinical trials. This activity is partly associated with its ability to inhibit Akt activity. It has been shown that the mammalian target of rapamycin (mTOR) axis plays a critical role in regulation of cell proliferation and survival primarily through functioning both downstream and upstream of Akt. The current study reveals a novel mechanism by which perifosine inhibits Akt and the mTOR axis. In addition to inhibition of Akt, perifosine inhibited the assembly of both mTOR/raptor and mTOR/rictor complexes. Strikingly, perifosine reduced the levels of Akt and other major components including mTOR, raptor, rictor, 70-kDa ribosomal S6 kinase, and 4E-binding protein 1 in the mTOR axis by promoting their degradation through a GSK3/FBW7-dependent mechanism. These results thus suggest that perifosine inhibits the mTOR axis through a different mechanism from inhibition of mTOR signaling by classic mTOR inhibitors such as rapamycin. Moreover, perifosine substantially increased the levels of type II light chain 3, a hallmark of autophagy, in addition to increasing poly(ADP-ribose) polymerase cleavage, suggesting that perifosine induces both apoptosis and autophagy. The combination of perifosine with a lysosomal inhibitor enhanced apoptosis and inhibited the growth of xenografts in nude mice, suggesting that perifosine-induced autophagy protects cells from undergoing apoptosis. Collectively, we conclude that perifosine inhibits mTOR signaling and induces autophagy, highlighting a novel mechanism accounting for the anticancer activity of perifosine and a potential strategy to enhance the anticancer efficacy of perifosine by preventing autophagy.


Cancer Research | 2008

Enhancing mTOR-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation

Xuerong Wang; Ping Yue; Young Ae Kim; Haian Fu; Fadlo R. Khuri; Shi-Yong Sun

It has been shown that mammalian target of rapamycin (mTOR) inhibitors activate Akt while inhibiting mTOR signaling. However, the underlying mechanisms and the effect of the Akt activation on mTOR-targeted cancer therapy are unclear. The present work focused on addressing the role of mTOR/rictor in mTOR inhibitor-induced Akt activation and the effect of sustained Akt activation on mTOR-targeted cancer therapy. Thus, we have shown that mTOR inhibitors increase Akt phosphorylation through a mechanism independent of mTOR/rictor because the assembly of mTOR/rictor was inhibited by mTOR inhibitors and the silencing of rictor did not abrogate mTOR inhibitor-induced Akt activation. Moreover, Akt activation during mTOR inhibition is tightly associated with development of cell resistance to mTOR inhibitors. Accordingly, cotargeting mTOR and phosphatidylinositol 3-kinase/Akt signaling prevents mTOR inhibition-initiated Akt activation and enhances antitumor effects both in cell cultures and in animal xenograft models, suggesting an effective cancer therapeutic strategy. Collectively, we conclude that inhibition of the mTOR/raptor complex initiates Akt activation independent of mTOR/rictor. Consequently, the sustained Akt activation during mTOR inhibition will counteract the anticancer efficacy of the mTOR inhibitors.


Molecular and Cellular Biology | 2007

Inhibition of Mammalian Target of Rapamycin Induces Phosphatidylinositol 3-Kinase-Dependent and Mnk-Mediated Eukaryotic Translation Initiation Factor 4E Phosphorylation

Xuerong Wang; Ping Yue; Chi Bun Chan; Keqiang Ye; Takeshi Ueda; Rie Watanabe-Fukunaga; Rikiro Fukunaga; Haian Fu; Fadlo R. Khuri; Shi-Yong Sun

ABSTRACT The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors’ effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycins ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. In addition, we also suggest an effective therapeutic strategy for enhancing mTOR-targeted cancer therapy by cotargeting mTOR signaling and Mnk/eIF4E phosphorylation.


Molecular Cancer Therapeutics | 2007

The alkylphospholipid perifosine induces apoptosis of human lung cancer cells requiring inhibition of Akt and activation of the extrinsic apoptotic pathway

Heath A. Elrod; Yi-Dan Lin; Ping Yue; Xuerong Wang; Sagar Lonial; Fadlo R. Khuri; Shi-Yong Sun

The Akt inhibitor, perifosine, is an alkylphospholipid exhibiting antitumor properties and is currently in phase II clinical trials for various types of cancer. The mechanisms by which perifosine exerts its antitumor effects, including the induction of apoptosis, are not well understood. The current study focused on the effects of perifosine on the induction of apoptosis and its underlying mechanisms in human non–small cell lung cancer (NSCLC) cells. Perifosine, at clinically achievable concentration ranges of 10 to 15 μmol/L, effectively inhibited the growth and induced apoptosis of NSCLC cells. Perifosine inhibited Akt phosphorylation and reduced the levels of total Akt. Importantly, enforced activation of Akt attenuated perifosine-induced apoptosis. These results indicate that Akt inhibition is necessary for perifosine-induced apoptosis. Despite the activation of both caspase-8 and caspase-9, perifosine strikingly induced the expression of the tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) receptor, death receptor 5, and down-regulated cellular FLICE-inhibitory protein (c-FLIP), an endogenous inhibitor of the extrinsic apoptotic pathway, with limited modulatory effects on the expression of other genes including Bcl-2, Bcl-XL, PUMA, and survivin. Silencing of either caspase-8 or death receptor 5 attenuated perifosine-induced apoptosis. Consistently, further down-regulation of c-FLIP expression with c-FLIP small interfering RNA sensitized cells to perifosine-induced apoptosis, whereas enforced overexpression of ectopic c-FLIP conferred resistance to perifosine. Collectively, these data indicate that activation of the extrinsic apoptotic pathway plays a critical role in perifosine-induced apoptosis. Moreover, perifosine cooperates with TRAIL to enhance the induction of apoptosis in human NSCLC cells, thus warranting future in vivo and clinical evaluation of perifosine in combination with TRAIL in the treatment of NSCLC. [Mol Cancer Ther 2007;6(7):2029–38]


Cancer Biology & Therapy | 2008

Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors’ anticancer efficacy

Xuerong Wang; Natalyn Hawk; Ping Yue; John Kauh; Suresh S. Ramalingam; Haian Fu; Fadlo R. Khuri; Shi-Yong Sun

The mammalian target of rapamycin (mTOR) has emerged as an important cancer therapeutic target. Several mTOR inhibitors are currently being tested in cancer clinical trials. Both PI3K/Akt and MEK/ERK signaling regulate mTOR axis. However, inhibition of mTOR activates Akt survival signaling, which in turn attenuates mTOR inhibitors’ anticancer efficacy. We are interested in developing strategies for enhancing mTOR-targeted cancer therapy. In this study, we report that mTOR inhibition also induced activations of the MEK/ERK signaling pathway in some cancer cell lines after a prolonged treatment. The combination of rapamycin with the MEK inhibitor U0126 significantly enhanced growth inhibitory effects of cancer cells, suggesting that MEK/ERK activation may counteract mTOR inhibitors’ anticancer efficacy. Similarly, the combination of an mTOR inhibitor with the EGF receptor inhibitor erlotinib synergistically inhibited the growth of both human cancer cells in cell cultures and xenografts in nude mice. Moreover, the presence of erlotinib suppressed rapamycin-induced phosphorylation of Akt, ERK and eIF4E as well, implying that erlotinib can suppress mTOR inhibition-induced feedback activation of several survival signaling pathways including Akt, ERK and eIF4E. Thus, we suggest a therapeutic strategy for enhancing mTOR-targeted cancer therapy by preventing mTOR inhibition-induced feedback activation of several survival mechanisms.


Journal of Biological Chemistry | 2013

Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation.

Yikun Li; Xuerong Wang; Ping Yue; Hui Tao; Suresh S. Ramalingam; Taofeek K. Owonikoko; Xingming Deng; Ya Wang; Haian Fu; Fadlo R. Khuri; Shi-Yong Sun

Background: The mechanisms underlying rapamycin-induced Akt phosphorylation have not been fully elucidated. Results: Inhibition of PP2A or DNA-PK attenuates or abrogates rapamycin-induced Akt phosphorylation and co-inhibition of mTOR and DNA-PK enhances anticancer activity. Conclusion: PP2A-dependent and DNA-PK-mediated mechanism is involved in rapamycin-induced Akt phosphorylation. Significance: A previously unknown mechanism underlying rapamycin-induced Akt phosphorylation and a novel strategy to enhance mTOR-targeted cancer therapy may be suggested. Inhibition of mammalian target of rapamycin complex 1 (mTORC1), for example with rapamycin, increases Akt phosphorylation while inhibiting mTORC1 signaling. However, the underlying mechanisms have not been fully elucidated. The current study has uncovered a previously unknown mechanism underlying rapamycin-induced Akt phosphorylation involving protein phosphatase 2A (PP2A)-dependent DNA protein kinase (DNA-PK) activation. In several cancer cell lines, inhibition of PP2A with okadaic acid, fostriecin, small T antigen, or PP2A knockdown abrogated rapamycin-induced Akt phosphorylation, and rapamycin increased PP2A activity. Chemical inhibition of DNA-PK, knockdown or deficiency of DNA-PK catalytic subunit (DNA-PKcs), or knock-out of the DNA-PK component Ku86 inhibited rapamycin-induced Akt phosphorylation. Exposure of cancer cells to rapamycin increased DNA-PK activity, and gene silencing-mediated PP2A inhibition attenuated rapamycin-induced DNA-PK activity. Collectively these results suggest that rapamycin induces PP2A-dependent and DNA-PK-mediated Akt phosphorylation. Accordingly, simultaneous inhibition of mTOR and DNA-PK did not stimulate Akt activity and synergistically inhibited the growth of cancer cells both in vitro and in vivo. Thus, our findings also suggest a novel strategy to enhance mTOR-targeted cancer therapy by co-targeting DNA-PK.


Heliyon | 2017

Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin

Xuerong Wang; Ping Yue; Hui Tao; Shi-Yong Sun

It has been suggested that the mTOR complex 1 (mTORC1)/p70S6K axis represses upstream PI3K/Akt signaling through phosphorylation of IRS-1 and its subsequent degradation. One potential and current model that explains Akt activation induced by the mTOR inhibitor rapamycin is the relief of mTORC1/p70S6K-mediated feedback inhibition of IRS-1/PI3K/Akt signaling, although this has not been experimentally proven. In this study, we found that chemical inhibition of p70S6K did not increase Akt phosphorylation. Surprisingly, knockdown of p70S6K even substantially inhibited Akt phosphorylation. Hence, p70S6K inhibition clearly does not mimic the activation of Akt by rapamycin. Inhibition or enforced activation of p70S6K did not affect the ability of rapamycin to increase Akt phosphorylation. Moreover, inhibition of mTORC1 with either rapamycin or raptor knockdown did not elevate IRS-1 levels, despite potently increasing Akt phosphorylation. Critically, knockdown or knockout of IRS-1 or IRS-2 failed to abolish the ability of rapamycin to increase Akt phosphorylation. Therefore, IRS-1 and IRS-2 are not essential for mediating rapamycin-induced Akt activation. Collectively, our findings suggest that Akt activation by rapamycin or mTORC1 inhibition is unlikely due to relief of p70S6K-mediated feedback inhibition of IRS-1/PI3K/Akt signaling.


Oncotarget | 2015

GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth

Junghui Koo; Xuerong Wang; Taofeek K. Owonikoko; Suresh S. Ramalingam; Fadlo R. Khuri; Shi-Yong Sun


Cancer Research | 2009

Abstract #5348: Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E (eIF4E) phosphorylation and eIF4F activity

Yikun Li; Xuerong Wang; Fadlo R. Khuri; Shi-Yong Sun

Collaboration


Dive into the Xuerong Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge