Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuesong Gu is active.

Publication


Featured researches published by Xuesong Gu.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Molecular sequelae of proteasome inhibition in human multiple myeloma cells

Nicholas Mitsiades; Constantine S. Mitsiades; Vassiliki Poulaki; Dharminder Chauhan; Galinos Fanourakis; Xuesong Gu; Charles G. Bailey; Marie Joseph; Towia A. Libermann; Steven P. Treon; Nikhil C. Munshi; Paul G. Richardson; Teru Hideshima; Kenneth C. Anderson

The proteasome inhibitor PS-341 inhibits IκB degradation, prevents NF-κB activation, and induces apoptosis in several types of cancer cells, including chemoresistant multiple myeloma (MM) cells. PS-341 has marked clinical activity even in the setting of relapsed refractory MM. However, PS-341-induced apoptotic cascade(s) are not yet fully defined. By using gene expression profiling, we characterized the molecular sequelae of PS-341 treatment in MM cells and further focused on molecular pathways responsible for the anticancer actions of this promising agent. The transcriptional profile of PS-341-treated cells involved down-regulation of growth/survival signaling pathways, and up-regulation of molecules implicated in proapoptotic cascades (which are both consistent with the proapoptotic effect of proteasome inhibition), as well as up-regulation of heat-shock proteins and ubiquitin/proteasome pathway members (which can correspond to stress responses against proteasome inhibition). Further studies on these pathways showed that PS-341 decreases the levels of several antiapoptotic proteins and triggers a dual apoptotic pathway of mitochondrial cytochrome c release and caspase-9 activation, as well as activation of Jun kinase and a Fas/caspase-8-dependent apoptotic pathway [which is inhibited by a dominant negative (decoy) Fas construct]. Stimulation with IGF-1, as well as overexpression of Bcl-2 or constitutively active Akt in MM cells also modestly attenuates PS-341-induced cell death, whereas inhibitors of the BH3 domain of Bcl-2 family members or the heat-shock protein 90 enhance tumor cell sensitivity to proteasome inhibition. These data provide both insight into the molecular mechanisms of antitumor activity of PS-341 and the rationale for future clinical trials of PS-341, in combination with conventional and novel therapies, to improve patient outcome in MM.


Clinical Cancer Research | 2005

Gene Signatures of Progression and Metastasis in Renal Cell Cancer

Jon Jones; Hasan H. Otu; Dimitrios Spentzos; Shakirahmed Kolia; Mehmet S. Inan; Wolf D. Beecken; Christian Fellbaum; Xuesong Gu; Marie Joseph; Allan J. Pantuck; Dietger Jonas; Towia A. Libermann

Purpose: To address the progression, metastasis, and clinical heterogeneity of renal cell cancer (RCC). Experimental Design: Transcriptional profiling with oligonucleotide microarrays (22,283 genes) was done on 49 RCC tumors, 20 non-RCC renal tumors, and 23 normal kidney samples. Samples were clustered based on gene expression profiles and specific gene sets for each renal tumor type were identified. Gene expression was correlated to disease progression and a metastasis gene signature was derived. Results: Gene signatures were identified for each tumor type with 100% accuracy. Differentially expressed genes during early tumor formation and tumor progression to metastatic RCC were found. Subsets of these genes code for secreted proteins and membrane receptors and are both potential therapeutic or diagnostic targets. A gene pattern (“metastatic signature”) derived from primary tumor was very accurate in classifying tumors with and without metastases at the time of surgery. A previously described “global” metastatic signature derived by another group from various non-RCC tumors was validated in RCC. Conclusion: Unlike previous studies, we describe highly accurate and externally validated gene signatures for RCC subtypes and other renal tumors. Interestingly, the gene expression of primary tumors provides us information about the metastatic status in the respective patients and has the potential, if prospectively validated, to enrich the armamentarium of diagnostic tests in RCC. We validated in RCC, for the first time, a previously described metastatic signature and further showed the feasibility of applying a gene signature across different microarray platforms. Transcriptional profiling allows a better appreciation of the molecular and clinical heterogeneity in RCC.


Journal of Clinical Oncology | 2004

Gene Expression Signature With Independent Prognostic Significance in Epithelial Ovarian Cancer

Dimitrios Spentzos; Douglas A. Levine; Marco F. Ramoni; Marie Joseph; Xuesong Gu; Jeff Boyd; Towia A. Libermann; Stephen A. Cannistra

PURPOSE Currently available clinical and molecular prognostic factors provide an imperfect assessment of prognosis for patients with epithelial ovarian cancer (EOC). In this study, we investigated whether tumor transcription profiling could be used as a prognostic tool in this disease. METHODS Tumor tissue from 68 patients was profiled with oligonucleotide microarrays. Samples were randomly split into training and validation sets. A three-step training procedure was used to discover a statistically significant Kaplan-Meier split in the training set. The resultant prognostic signature was then tested on an independent validation set for confirmation. RESULTS In the training set, a 115-gene signature referred to as the Ovarian Cancer Prognostic Profile (OCPP) was identified. When applied to the validation set, the OCPP distinguished between patients with unfavorable and favorable overall survival (median, 30 months v not yet reached, respectively; log-rank P = .004). The signature maintained independent prognostic value in multivariate analysis, controlling for other known prognostic factors such as age, stage, grade, and debulking status. The hazard ratio for death in the unfavorable OCPP group was 4.8 (P = .021 by Cox proportional hazards analysis). CONCLUSION The OCPP is an independent prognostic determinant of outcome in EOC. The use of gene profiling may ultimately permit identification of EOC patients appropriate for investigational treatment approaches, based on a low likelihood of achieving prolonged survival with standard first-line platinum-based therapy.


Journal of Biological Chemistry | 1999

Characterization of ESE-2, a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and differentiated keratinocytes.

Peter Oettgen; Koen Kas; Antoinise Dube; Xuesong Gu; Frank Grall; Usanee Thamrongsak; Yasmin Akbarali; Eduardo Finger; Jay Boltax; Greg Endress; Karl Munger; Chuck Kunsch; Towia A. Libermann

Epithelial cell differentiation is tightly controlled by distinct sets of transcription factors that regulate the expression of stage-specific genes. We recently isolated the first epithelium-specific Ets transcription factor (ESE-1). Here we describe the characterization of ESE-2, a second epithelium-restricted ESE-1-related Ets factor. Like ESE-1, ESE-2 is induced during keratinocyte differentiation. However, whereas ESE-1 is expressed in the majority of epithelial cell types, ESE-2 expression is restricted to differentiated keratinocytes and glandular epithelium such as salivary gland, prostate, mammary gland, and kidney. In contrast to ESE-1, full-length ESE-2 binds poorly to DNA due to the presence of a negative regulatory domain at the amino terminus. Furthermore, although ESE-1 and the amino-terminally deleted ESE-2 bind with similar affinity to the canonical E74 Ets site, ESE-2 and ESE-1 differ strikingly in their relative affinity toward binding sites in the c-MET and PSMA promoters. Similarly, ESE-1 and ESE-2 drastically differ in their ability to transactivate epithelium-specific promoters. Thus, ESE-2, but not ESE-1, transactivates the parotid gland-specific PSP promoter and the prostate-specific PSA promoter. In contrast, ESE-1 transactivates the keratinocyte-specific SPRR2A promoter Ets site and the prostate-specific PSMA promoter significantly better than ESE-2. Our results demonstrate the existence of a unique class of related epithelium-specific Ets factors with distinct functions in epithelial cell gene regulation.


Journal of Biological Chemistry | 2000

ESE-3, a Novel Member of an Epithelium-specific Ets Transcription Factor Subfamily, Demonstrates Different Target Gene Specificity from ESE-1

Koen Kas; Eduardo Finger; Franck Grall; Xuesong Gu; Yasmin Akbarali; Jay Boltax; Avi Weiss; Peter Oettgen; Rosana Kapeller; Towia A. Libermann

Most cancers originate as a result of aberrant gene expression in mainly glandular epithelial tissues leading to defects in epithelial cell differentiation. The latter is governed by distinct sets of transcriptional regulators. Here we report the characterization of epithelium-specific Ets factor, family member 3 (ESE-3), a novel member of the ESE subfamily of Ets transcription factors. ESE-3 shows highest homology to two other epithelium restricted Ets factors, ESE-1 and ESE-2. ESE-3, like ESE-1 and ESE-2, is exclusively expressed in a subset of epithelial cells with highest expression in glandular epithelium such as prostate, pancreas, salivary gland, and trachea. A potential role in branching morphogenesis is suggested, since ESE-3 transactivates the c-MET promoter via three high affinity binding sites. Additionally, ESE-3 binding to DNA sequences in the promoters of several glandular epithelium-specific genes suggests a role for ESE-3 in later stages of glandular epithelium differentiation. Although ESE-3 and ESE-1 bind with similar affinity to various Ets binding sites, ESE-3 and ESE-1 differ significantly in their ability to transactivate the promoters containing these sites. Our results support the notion that ESE-1, ESE-2, and ESE-3 represent a unique epithelium-specific subfamily of Ets factors that have critical but distinct functions in epithelial cell differentiation and proliferation.


Matrix Biology | 2008

VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and β3-integrin

Quanli Yang; Kevin P. McHugh; Somying Patntirapong; Xuesong Gu; Livius Wunderlich; Peter V. Hauschka

VEGF dependent angiogenesis is required for normal bone development and has been implicated in cancer metastasis to bone. These processes, while dependent on osteoclastic bone resorption, are reportedly mediated by endothelial cells, stromal osteoblasts, chondrocytes, and/or tumor cells. We demonstrate here that VEGF treatment of purified murine bone marrow osteoclast precursors directly enhances their survival, differentiation into mature osteoclasts, and resorptive activity. The actions of VEGF on mature osteoclasts principally involve the receptor VEGFR2 (Flk1, KDR), and the receptor signaling utilizes both the PI3-kinase-->Akt and MEK-->ERK pathways. Increased osteoclast survival and resorptive activity is correlated with VEGF-dependent phosphorylation of multiple downstream targets of activated Akt [glycogen synthase kinase, GSK-3beta; forkhead transcription factor, FKHR; and the Bcl-2 antagonist of cell death, Bad (Ser136)] and activated ERK1/2 [ribosomal S6 kinase, p90RSK; and Bad (Ser112)]. Expression of the VEGFR2 gene increases 20-fold during the 6 day in vitro differentiation of mature osteoclasts from mononuclear precursors, while alternate receptors VEGFR1 and neuropilin-1, decrease 30- and 3-fold respectively. Additionally, VEGF enhancement of osteoclast survival is diminished in cells prepared from beta3 integrin-deficient mice, thus associating VEGF signaling in osteoclasts with their attachment to extracellular matrix. Our results indicate that VEGF directly targets osteoclasts, thereby playing a novel role in bone development, angiogenesis, and tumor metastasis.


Cancer Research | 2007

Reduced PDEF Expression Increases Invasion and Expression of Mesenchymal Genes in Prostate Cancer Cells

Xuesong Gu; Luiz F. Zerbini; Hasan H. Otu; Manoj Bhasin; Quanli Yang; Marie Joseph; Franck Grall; Tomi Onatunde; Ricardo G. Correa; Towia A. Libermann

The epithelium-specific Ets transcription factor, PDEF, plays a role in prostate and breast cancer, although its precise function has not been established. In prostate cancer, PDEF is involved in regulating prostate-specific antigen expression via interaction with the androgen receptor and NKX3.1, and down-regulation of PDEF by antiproliferative agents has been associated with reduced PDEF expression. We now report that reduced expression of PDEF leads to a morphologic change, increased migration and invasiveness in prostate cancer cells, reminiscent of transforming growth factor beta (TGFbeta) function and epithelial-to-mesenchymal transition. Indeed, inhibition of PDEF expression triggers a transcriptional program of genes involved in the TGFbeta pathway, migration, invasion, adhesion, and epithelial dedifferentiation. Our results establish PDEF as a critical regulator of genes involved in cell motility, invasion, and adhesion of prostate cancer cells.


Oncogene | 2013

The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target

Juliano D. Paccez; Gabriela J Vasques; Ricardo G. Correa; Jaíra Ferreira de Vasconcellos; Kristal Duncan; Xuesong Gu; Manoj Bhasin; Towia A. Libermann; Luiz F. Zerbini

Deregulation of the receptor tyrosine kinase Axl has been implicated in the progression of several human cancers. However, the role of Axl in prostate cancer remains poorly understood, and the therapeutic efficacy of Axl targeting remains untested. In this report we identified Axl as a new therapeutic target for prostate cancer. Axl is consistently overexpressed in prostate cancer cell lines and human prostate tumors. Interestingly, the blockage of Axl gene expression strongly inhibits proliferation, migration, invasion and tumor growth. Furthermore, inhibition of Axl expression by small interfering RNA regulates a transcriptional program of genes involved in cell survival, strikingly all connected to the nuclear factor-κB pathway. Additionally, blockage of Axl expression leads to inhibition of Akt, IKKα and IκBα phosphorylation, increasing IκBα expression and stability. Furthermore, induction of Akt phosphorylation by insulin-like growth factor 1 in Axl knockdown cells restores Akt activity and proliferation. Taken together, our results establish an unambiguous role for Axl in prostate cancer tumorigenesis with implications for prostate cancer treatment.


Journal of Biological Chemistry | 2004

ESE-1 Is a Novel Transcriptional Mediator of Angiopoietin-1 Expression in the Setting of Inflammation

Courtney Brown; John Gaspar; Allison R. Pettit; Rebecca Lee; Xuesong Gu; Hong Wang; C. Manning; Carole Voland; Steven R. Goldring; Mary B. Goldring; Towia A. Libermann; Ellen M. Gravallese; Peter Oettgen

Angiogenesis is a critical component of the inflammatory response associated with a number of conditions. Angiopoietin-1 (Ang-1) is an angiogenic growth factor that promotes the chemotaxis of endothelial cells and facilitates the maturation of new blood vessels. Ang-1 expression is up-regulated in response to tumor necrosis factor-α (TNF-α). To begin to elucidate the underlying molecular mechanisms by which Ang-1 gene expression is regulated during inflammation, we isolated 3.2 kb of the Ang-1 promoter that contain regulatory elements sufficient to mediate induction of the promoter in response to TNF-α, interleukin-1β, and endotoxin. Surprisingly, sequence analysis of this promoter failed to reveal binding sites for transcription factors that are frequently associated with mediating inflammatory responses, such as NF-κB, STAT, NFAT, or C/EBP. However, putative binding sites for ETS and AP-1 transcription factor family members were identified. Interestingly, among a panel of ETS factors tested in a transient transfection assay, only the ETS factor ESE-1 was capable of transactivating the Ang-1 promoter. ESE-1 binds to specific ETS sites within the Ang-1 promoter that are functionally important for transactivation by ESE-1. ESE-1 and Ang-1 are induced in synovial fibroblasts in response to inflammatory cytokines, with ESE-1 induction slightly preceding that of Ang-1. Mutation of a high-affinity ESE-1 binding site leads to a marked reduction in Ang-1 transactivation by ESE-1, inducibility by inflammatory cytokines, and DNA binding to the ESE-1 protein. Transcriptional profiling of cells transiently transfected with an ESE-1 expression vector demonstrates that the endogenous Ang-1 gene is directly inducible by ESE-1. Finally, Ang-1 and ESE-1 exhibit a similar and strong expression pattern in the synovium of patients with rheumatoid arthritis. Our results support a novel paradigm for the ETS factor ESE-1 as a transcriptional mediator of angiogenesis in the setting of inflammation.


Cancer Research | 2006

A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells.

Luiz F. Zerbini; Akos Czibere; Yihong Wang; Ricardo G. Correa; Hasan H. Otu; Marie Joseph; Yuko Takayasu; Moriah Silver; Xuesong Gu; Kriangsak Ruchusatsawat; Linglin Li; Devanand Sarkar; Jin-Rong Zhou; Paul B. Fisher; Towia A. Libermann

Numerous studies show that nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in chemoprevention or treatment of cancer. Nevertheless, the mechanisms underlying these antineoplastic effects remain poorly understood. Here, we report that induction of the cancer-specific proapoptotic cytokine melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24) by several NSAIDs is an essential step for induction of apoptosis and G(2)-M growth arrest in cancer cells in vitro and inhibition of tumor growth in vivo. We also show that MDA-7/IL-24-dependent up-regulation of growth arrest and DNA damage inducible 45 alpha (GADD45alpha) and GADD45gamma gene expression is sufficient for cancer cell apoptosis via c-Jun NH(2)-terminal kinase (JNK) activation and growth arrest induction through inhibition of Cdc2-cyclin B checkpoint kinase. Knockdown of GADD45alpha and GADD45gamma transcription by small interfering RNA abrogates apoptosis and growth arrest induction by the NSAID treatment, blocks JNK activation, and restores Cdc2-cyclin B kinase activity. Our results establish MDA-7/IL-24 and GADD45alpha and GADD45gamma as critical mediators of apoptosis and growth arrest in response to NSAIDs in cancer cells.

Collaboration


Dive into the Xuesong Gu's collaboration.

Top Co-Authors

Avatar

Towia A. Libermann

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Luiz F. Zerbini

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Manoj Bhasin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Oettgen

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Franck Grall

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hasan H. Otu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge