Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuesong Yu is active.

Publication


Featured researches published by Xuesong Yu.


Journal of Virology | 2009

Factors Associated with the Development of Cross-Reactive Neutralizing Antibodies during Human Immunodeficiency Virus Type 1 Infection

D. Noah Sather; Jakob Armann; Lance K. Ching; Angeliki Mavrantoni; George Sellhorn; Zachary Caldwell; Xuesong Yu; Blake Wood; Steve Self; Spyros A. Kalams; Leonidas Stamatatos

ABSTRACT The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.


PLOS ONE | 2010

Anti-V3 Monoclonal Antibodies Display Broad Neutralizing Activities against Multiple HIV-1 Subtypes

Catarina E. Hioe; Terri Wrin; Michael S. Seaman; Xuesong Yu; Blake Wood; Steve Self; Constance Williams; Miroslaw K. Gorny; Susan Zolla-Pazner

Background The V3 loop of the HIV-1 envelope (Env) glycoprotein gp120 was identified as the “principal neutralizing domain” of HIV-1, but has been considered too variable to serve as a neutralizing antibody (Ab) target. Structural and immunochemical data suggest, however, that V3 contains conserved elements which explain its role in binding to virus co-receptors despite its sequence variability. Despite this evidence of V3 conservation, the ability of anti-V3 Abs to neutralize a significant proportion of HIV-1 isolates from different subtypes (clades) has remained controversial. Methods HIV-1 neutralization experiments were conducted in two independent laboratories to test human anti-V3 monoclonal Abs (mAbs) against pseudoviruses (psVs) expressing Envs of diverse HIV-1 subtypes from subjects with acute and chronic infections. Neutralization was defined by 50% inhibitory concentrations (IC50), and was statistically assessed based on the area under the neutralization titration curves (AUC). Results Using AUC analyses, statistically significant neutralization was observed by ≥1 anti-V3 mAbs against 56/98 (57%) psVs expressing Envs of diverse subtypes, including subtypes A, AG, B, C and D. Even when the 10 Tier 1 psVs tested were excluded from the analysis, significant neutralization was detected by ≥1 anti-V3 mAbs against 46/88 (52%) psVs from diverse HIV-1 subtypes. Furthermore, 9/24 (37.5%) Tier 2 viruses from the clade B and C standard reference panels were neutralized by ≥1 anti-V3 mAbs. Each anti-V3 mAb tested was able to neutralize 28–42% of the psVs tested. By IC50 criteria, 40/98 (41%) psVs were neutralized by ≥1 anti-V3 mAbs. Conclusions Using standard and new statistical methods of data analysis, 6/7 anti-V3 human mAbs displayed cross-clade neutralizing activity and revealed that a significant proportion of viruses can be neutralized by anti-V3 Abs. The new statistical method for analysis of neutralization data provides many advantages to previously used analyses.


PLOS ONE | 2013

Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design.

Pratima Kunwar; Natalie Hawkins; Warren L. Dinges; Yi Liu; Erin E. Gabriel; David A. Swan; Claire E. Stevens; Janine Maenza; Ann C. Collier; James I. Mullins; Tomer Hertz; Xuesong Yu; Helen Horton

A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that can elicit CD8+ T cell responses to multiple conserved epitopes of HIV-1.


Journal of Immunological Methods | 2012

Development and implementation of an international proficiency testing program for a neutralizing antibody assay for HIV-1 in TZM-bl cells

Christopher A. Todd; Kelli M. Greene; Xuesong Yu; Daniel A. Ozaki; Hongmei Gao; Yunda Huang; Maggie Wang; Gary Li; Ronald Brown; Blake Wood; M. Patricia D'Souza; Peter B. Gilbert; David C. Montefiori; Marcella Sarzotti-Kelsoe

Recent advances in assay technology have led to major improvements in how HIV-1 neutralizing antibodies are measured. A luciferase reporter gene assay performed in TZM-bl (JC53bl-13) cells has been optimized and validated. Because this assay has been adopted by multiple laboratories worldwide, an external proficiency testing program was developed to ensure data equivalency across laboratories performing this neutralizing antibody assay for HIV/AIDS vaccine clinical trials. The program was optimized by conducting three independent rounds of testing, with an increased level of stringency from the first to third round. Results from the participating domestic and international laboratories improved each round as factors that contributed to inter-assay variability were identified and minimized. Key contributors to increased agreement were experience among laboratories and standardization of reagents. A statistical qualification rule was developed using a simulation procedure based on the three optimization rounds of testing, where a laboratory qualifies if at least 25 of the 30 ID50 values lie within the acceptance ranges. This ensures no more than a 20% risk that a participating laboratory fails to qualify when it should, as defined by the simulation procedure. Five experienced reference laboratories were identified and tested a series of standardized reagents to derive the acceptance ranges for pass-fail criteria. This Standardized Proficiency Testing Program is the first available for the evaluation and documentation of assay equivalency for laboratories performing HIV-1 neutralizing antibody assays and may provide guidance for the development of future proficiency testing programs for other assay platforms.


Vaccine | 2015

Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials

Xia Jin; Cecilia Morgan; Xuesong Yu; Stephen DeRosa; Georgia D. Tomaras; David C. Montefiori; James G. Kublin; Larry Corey; Michael C. Keefer

Plasmid DNA vaccines have been licensed for use in domesticated animals because of their excellent immunogenicity, but none have yet been licensed for use in humans. Here we report a retrospective analysis of 1218 healthy human volunteers enrolled in 10 phase I clinical trials in which DNA plasmids encoding HIV antigens were administered. Elicited T-cell immune responses were quantified by validated intracellular cytokine staining (ICS) stimulated with HIV peptide pools. HIV-specific binding and neutralizing antibody activities were also analyzed using validated assays. Results showed that, in the absence of adjuvants and boosting with alternative vaccines, DNA vaccines elicited CD8+ and CD4+ T-cell responses in an average of 13.3% (95% CI: 9.8-17.8%) and 37.7% (95% CI: 31.9-43.8%) of vaccine recipients, respectively. Three vaccinations (vs. 2) improved the proportion of subjects with antigen-specific CD8+ responses (p=0.02), as did increased DNA dosage (p=0.007). Furthermore, female gender and participants having a lower body mass index were independently associated with higher CD4+ T-cell response rate (p=0.001 and p=0.008, respectively). These vaccines elicited minimal neutralizing and binding antibody responses. These findings of the immunogenicity of HIV DNA vaccines in humans can provide guidance for future clinical trials.


PLOS ONE | 2016

Comparative Immunogenicity of HIV-1 gp140 Vaccine Delivered by Parenteral, and Mucosal Routes in Female Volunteers; MUCOVAC2, A Randomized Two Centre Study

Catherine A. Cosgrove; Charles Lacey; Alethea Cope; Angela Bartolf; Georgina C Morris; Celine Yan; Susan Baden; Tom Cole; Darrick Carter; Elizabeth Brodnicki; Xiaoying Shen; Sarah Joseph; Stephen DeRosa; Lili Peng; Xuesong Yu; Guido Ferrari; Mike Seaman; David C. Montefiori; Nicole Frahm; Georgia D. Tomaras; Wolfgang Stöhr; Sheena McCormack; Robin J. Shattock

Background Defining optimal routes for induction of mucosal immunity represents an important research priority for the HIV-1 vaccine field. In particular, it remains unclear whether mucosal routes of immunization can improve mucosal immune responses. Methods In this randomized two center phase I clinical trial we evaluated the systemic and mucosal immune response to a candidate HIV-1 Clade C CN54gp140 envelope glycoprotein vaccine administered by intramuscular (IM), intranasal (IN) and intravaginal (IVAG) routes of administration in HIV negative female volunteers. IM immunizations were co-administered with Glucopyranosyl Lipid Adjuvant (GLA), IN immunizations with 0.5% chitosan and IVAG immunizations were administered in an aqueous gel. Results Three IM immunizations of CN54 gp140 at either 20 or 100 μg elicited significantly greater systemic and mucosal antibodies than either IN or IVAG immunizations. Following additional intramuscular boosting we observed an anamnestic antibody response in nasally primed subjects. Modest neutralizing responses were detected against closely matched tier 1 clade C virus in the IM groups. Interestingly, the strongest CD4 T-cell responses were detected after IN and not IM immunization. Conclusions These data show that parenteral immunization elicits systemic and mucosal antibodies in women. Interestingly IN immunization was an effective prime for IM boost, while IVAG administration had no detectable impact on systemic or mucosal responses despite IM priming. Clinical Trials Registration EudraCT 2010-019103-27 and the UK Clinical Research Network (UKCRN) Number 11679


Journal of Virology | 2017

Superiority in rhesus macaques of targeting HIV-1 Env gp140 to CD40 versus LOX-1 in combination with replication-competent NYVAC-KC for induction of Env-specific antibody and T cell responses

Gerard Zurawski; Xiaoying Shen; Sandra Zurawski; Georgia D. Tomaras; David C. Montefiori; Mario Roederer; Guido Ferrari; Christine Lacabaratz; Peter Klucar; Zhiqing Wang; Kathryn E. Foulds; Shing-Fen Kao; Xuesong Yu; Alicia Sato; Nicole L. Yates; Celia C. LaBranche; Sherry A. Stanfield-Oakley; Karen V. Kibler; Bertram L. Jacobs; Andres M. Salazar; Steve Self; Jimmy Fulp; Raphael Gottardo; Lindsey Galmin; Deborah Weiss; Anthony D. Cristillo; Giuseppe Pantaleo; Yves Levy

ABSTRACT We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4+ and CD8+ T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1. IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells, which are now known to be the key cell type for controlling immunity. In this study, we have tested in nonhuman primates two prototype vaccines engineered to direct the HIV-1 coat protein Env to dendritic cells. These vaccines bind to either CD40 or LOX-1, two dendritic cell surface receptors with different functions and tissue distributions. We tested the vaccines described above in combination with attenuated virus vectors that express Env. Both vaccines, but especially that delivered via CD40, raised robust immunity against HIV-1 as measured by monitoring potentially protective antibody and T cell responses in the blood. The safety and efficacy of the CD40-targeted vaccine justify further development for future human clinical trials.


Journal of Immunology | 2017

A Systems Vaccinology Approach Reveals Temporal Transcriptomic Changes of Immune Responses to the Yellow Fever 17D Vaccine

Jue Hou; Shuhui Wang; Manxue Jia; Dan Li; Ying Liu; Zhengpeng Li; Hong Zhu; Huifang Xu; Meiping Sun; Li Lu; Zhinan Zhou; Hong Peng; Qichen Zhang; Shihong Fu; Guodong Liang; Lena Yao; Xuesong Yu; Lindsay N. Carpp; Yunda Huang; Julie McElrath; Steve Self; Yiming Shao

In this study, we used a systems vaccinology approach to identify temporal changes in immune response signatures to the yellow fever (YF)-17D vaccine, with the aim of comprehensively characterizing immune responses associated with protective immunity. We conducted a cohort study in which 21 healthy subjects in China were administered one dose of the YF-17D vaccine; PBMCs were collected at 0 h and then at 4 h and days 1, 2, 3, 5, 7, 14, 28, 84, and 168 postvaccination, and analyzed by transcriptional profiling and immunological assays. At 4 h postvaccination, genes associated with innate cell differentiation and cytokine pathways were dramatically downregulated, whereas receptor genes were upregulated, compared with their baseline levels at 0 h. Immune response pathways were primarily upregulated on days 5 and 7, accompanied by the upregulation of the transcriptional factors JUP, STAT1, and EIF2AK2. We also observed robust activation of innate immunity within 2 d postvaccination and a durable adaptive response, as assessed by transcriptional profiling. Coexpression network analysis indicated that lysosome activity and lymphocyte proliferation were associated with dendritic cell (DC) and CD4+ T cell responses; FGL2, NFAM1, CCR1, and TNFSF13B were involved in these associations. Moreover, individuals who were baseline-seropositive for Abs against another flavivirus exhibited significantly impaired DC, NK cell, and T cell function in response to YF-17D vaccination. Overall, our findings indicate that YF-17D vaccination induces a prompt innate immune response and DC activation, a robust Ag-specific T cell response, and a persistent B cell/memory B cell response.


Statistics in Biopharmaceutical Research | 2012

Statistical Approaches to Analyzing HIV-1 Neutralizing Antibody Assay Data

Xuesong Yu; Peter B. Gilbert; Catarina E. Hioe; Susan Zolla-Pazner; Steven G. Self

Neutralizing antibody assays are widely used in research toward the development of a preventive HIV-1 vaccine. Currently, the neutralization potency of an antibody is typically quantified by the inhibitory concentration (IC) values (e.g., IC50), and the neutralization breadth is estimated by the empirical method. In this article, we propose the area under the curve (AUC) and the partial area under the curve (pAUC) measures for summarizing the titration curve, which complement the commonly used IC measure. We present multiple advantages of AUC over IC50, which include no complications due to censoring, the capability to explore low-level neutralization, and improved coverage probabilities and efficiency of estimators. We also propose statistical methods for determining positive neutralization and for estimating the neutralization breadth. The simulation results suggest that the AUC measure is preferable in particular as IC50s get closer to the highest concentration of antibodies tested. For the majority of the assay data, the AUC method is more powerful than the IC50 method. However, since these methods test different hypotheses, it is not unexpected that some virus–antibody combinations are AUC positive but IC50 negative or vice versa.


PLOS ONE | 2017

Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults

Susan Buchbinder; Nicole Grunenberg; Brittany Sanchez; Kelly E. Seaton; Guido Ferrari; M. Anthony Moody; Nicole Frahm; David C. Montefiori; Christine M. Hay; Paul A. Goepfert; Lindsey R. Baden; Harriet L. Robinson; Xuesong Yu; Peter B. Gilbert; M. Juliana McElrath; Yunda Huang; Georgia D. Tomaras

Background A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Methods Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. Results All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. Conclusion This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. Trial registration ClinicalTrials.gov NCT01571960

Collaboration


Dive into the Xuesong Yu's collaboration.

Top Co-Authors

Avatar

Blake Wood

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Steve Self

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter B. Gilbert

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lance K. Ching

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Leonidas Stamatatos

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Nicole Frahm

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge