Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuetao Gan is active.

Publication


Featured researches published by Xuetao Gan.


Scientific Reports | 2015

WS2 mode-locked ultrafast fiber laser

Dong Mao; Yadong Wang; Chaojie Ma; Lei Han; Biqiang Jiang; Xuetao Gan; Shijia Hua; Wending Zhang; Ting Mei; Jianlin Zhao

Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy.


Nano Letters | 2013

High-Contrast Electrooptic Modulation of a Photonic Crystal Nanocavity by Electrical Gating of Graphene

Xuetao Gan; Ren-Jye Shiue; Yuanda Gao; Kin Fai Mak; Xinwen Yao; Luozhou Li; Attila Szep; Dennis E. Walker; James Hone; Tony F. Heinz; Dirk Englund

We demonstrate high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A silicon air-slot nanocavity provides strong overlap between the resonant optical field and graphene. Tuning the Fermi energy of the graphene layer to 0.85 eV enables strong control of its optical conductivity at telecom wavelengths, which allows modulation of cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. The cavity resonance at 1570 nm is found to undergo a shift in wavelength of nearly 2 nm, together with a 3-fold increase in quality factor. These observations enable a cavity-enhanced determination of graphenes complex optical sheet conductivity at different doping levels. Our simple device demonstrates the feasibility of high-contrast, low-power, and frequency-selective electro-optic modulators in graphene-integrated silicon photonic integrated circuits.


Applied Physics Letters | 2013

Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity

Xuetao Gan; Yuanda Gao; Kin Fai Mak; Xinwen Yao; Ren-Jye Shiue; Arend van der Zande; Matthew E. Trusheim; Fariba Hatami; Tony F. Heinz; James Hone; Dirk Englund

We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70.


Optics Express | 2015

WS 2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm

Dong Mao; Shengli Zhang; Yadong Wang; Xuetao Gan; Wending Zhang; Ting Mei; Yonggang Wang; Yishan Wang; Haibo Zeng; Jianlin Zhao

Transition-metal dichalcogenides, such as tungsten disulfide (WS2) and molybdenium disulfide (MoS2), are highly anisotropic layered materials and have attracted growing interest from basic research to practical applications due to their exotic physical property that may complement graphene and other semiconductor materials. WS2 nanosheets are found to exhibit broadband nonlinear saturable absorption property, and saturable absorbers (SAs) are fabricated by depositing WS2 nanosheets on side-polished fibers. Attributing to the weak evanescent field and long interaction length, the WS2 nanosheets are not exposed to large optical intensity, which allows the SA to work at the high-power regime. The SAs are used to mode lock erbium- and ytterbium-doped fiber lasers with normal dispersion, producing trains of dissipative soliton at 1.55 and 1.06 µm respectively. Simulations show that the bandgap of WS2 nanosheets decreases from 1.18 to 0.02 and 0.65 eV by introducing W and S defects respectively, which may contribute to the broadband saturable absorption property of the WS2.


Applied Physics Letters | 2012

A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array

Xuetao Gan; Nadia K. Pervez; Ioannis Kymissis; Fariba Hatami; Dirk Englund

We demonstrate a compact spectrometer based on an array of high-quality-factor photonic crystal nanocavities, coupled via a planar two-dimensional waveguide. This architecture enables spectral analysis of incident light with resolution as high as the bandwidth of the cavity mode–0.3 nm at 840 nm for our device. The design is easily extended to the visible and deep-infrared spectral ranges. The two-dimensional cavity array can be mated to commercial two-dimensional optical detector arrays, creating a compact and high-resolution spectrometer suitable for a range of applications including materials and chemical analysis.


Nano Letters | 2015

High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity

Yuanda Gao; Ren-Jye Shiue; Xuetao Gan; Luozhou Li; Cheng Peng; Inanc Meric; Lei Wang; Attila Szep; Dennis E. Walker; James Hone; Dirk Englund

Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and interchip communications.1-4 Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption, and modulation depth.5-11 However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties.12-14 Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modulation depth of 3.2 dB and a cutoff frequency of 1.2 GHz.


Optics Express | 2015

Harmonic mode locking of bound-state solitons fiber laser based on MoS 2 saturable absorber

Yadong Wang; Dong Mao; Xuetao Gan; Lei Han; Chaojie Ma; Teli Xi; Yi Zhang; Wuyun Shang; Shijia Hua; Jianlin Zhao

We present a kind of harmonic mode locking of bound-state solitons in a fiber laser based on molybdenum disulfide (MoS(2)) saturable absorber (SA). The mode locker is fabricated by depositing MoS(2) nanosheets on a D-shaped fiber (DF). In the fiber laser, two solitons form the bound-state pulses with a temporal separation of 3.4 ps, and the bound-state pulses are equally distributed at a repetition rate of 125 MHz, corresponding to 14th harmonics of fundamental cavity repetition rate (8.968 MHz). Single- and multiple-pulses emissions are also observed by changing the pump power and optimizing the DF based MoS(2) SA. Our experiment demonstrates an interesting operation regime of mode-locked fiber laser, and shows that DF based MoS(2) SA can work as a promising high-power mode locker in ultrafast lasers.


Applied Physics Letters | 2013

Enhanced photodetection in graphene-integrated photonic crystal cavity

Ren-Jye Shiue; Xuetao Gan; Yuanda Gao; Luozhou Li; Xinwen Yao; Attila Szep; Dennis E. Walker; James Hone; Dirk Englund

We demonstrate the controlled enhancement of photoresponsivity in a graphene photodetector by coupling to slow light modes in a long photonic crystal linear defect cavity. Near the Brillouin zone (BZ) boundary, spectral coupling of multiple cavity modes results in broad-band photocurrent enhancement from 1530 nm to 1540 nm. Away from the BZ boundary, individual cavity resonances enhance the photocurrent eight-fold in narrow resonant peaks. Optimization of the photocurrent via critical coupling of the incident field with the graphene-cavity system is discussed. The enhanced photocurrent demonstrates the feasibility of a wavelength-scale graphene photodetector for efficient photodetection with high spectral selectivity and broadband response.


Applied Physics Letters | 2014

High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity

Hannah Clevenson; Pierre Desjardins; Xuetao Gan; Dirk Englund

We present high-sensitivity, multi-use optical gas sensors based on a one-dimensional photonic crystal cavity. These devices are implemented in versatile, flexible polymer materials which swell when in contact with a target gas, causing a measurable cavity length change. This change causes a shift in the cavity resonance, allowing precision measurements of gas concentration. We demonstrate suspended polymer nanocavity sensors and the recovery of sensors after the removal of stimulant gas from the system. With a measured quality factor exceeding 104, we show measurements of gas concentration as low as 600 parts per million (ppm) and an experimental sensitivity of 10 ppm; furthermore, we predict detection levels in the parts-per-billion range for a variety of gases.


Scientific Reports | 2013

Nanophotonic Filters and Integrated Networks in Flexible 2D Polymer Photonic Crystals

Xuetao Gan; Hannah Clevenson; Cheng-Chia Tsai; Luozhou Li; Dirk Englund

Polymers have appealing optical, biochemical, and mechanical qualities, including broadband transparency, ease of functionalization, and biocompatibility. However, their low refractive indices have precluded wavelength-scale optical confinement and nanophotonic applications in polymers. Here, we introduce a suspended polymer photonic crystal (SPPC) architecture that enables the implementation of nanophotonic structures typically limited to high-index materials. Using the SPPC platform, we demonstrate nanophotonic band-edge filters, waveguides, and nanocavities featuring quality (Q) factors exceeding 2, 300 and mode volumes (Vmode) below 1.7(λ/n)3. The unprecedentedly high Q/Vmode ratio results in a spectrally selective enhancement of radiative transitions of embedded emitters via the cavity Purcell effect with an enhancement factor exceeding 100. Moreover, the SPPC architecture allows straightforward integration of nanophotonic networks, shown here by a waveguide-coupled cavity drop filter with sub-nanometer spectral resolution. The nanoscale optical confinement in polymer promises new applications ranging from optical communications to organic opto-electronics, and nanophotonic polymer sensors.

Collaboration


Dive into the Xuetao Gan's collaboration.

Top Co-Authors

Avatar

Jianlin Zhao

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Dirk Englund

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sheng Liu

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Dong Mao

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Liang Fang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Chenyang Zhao

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Ren-Jye Shiue

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yadong Wang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Peng Zhang

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar

Lei Han

Northwestern Polytechnical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge