Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueting Liu is active.

Publication


Featured researches published by Xueting Liu.


Journal of Biological Chemistry | 2011

Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform α (tap63α)

Ruili Sun; Yu Zhang; Qingshan Lv; Bei Liu; Miao Jin; Weijia Zhang; Qing He; Minjie Deng; Xueting Liu; Guancheng Li; Yuehui Li; Guohua Zhou; Pingli Xie; Xiumei Xie; Jinyue Hu; Zhaojun Duan

Toll-like receptor 3 (TLR3), a member of the pathogen recognition receptors, is widely expressed in various cells and has been shown to activate immune signaling pathways by recognizing viral double-stranded RNA. Recently, it was reported that the activation of TLR3 induced apoptosis in some cells, but the detailed molecular mechanism is not fully understood. In this study, we found that in endothelial cells polyinosinic-polycytidylic acid (poly(I-C)) induced dose- and time-dependent cell apoptosis, which was elicited by TLR3 activation, as TLR3 neutralization and down-regulation repressed the apoptosis. Poly(I-C) induced the activation of both caspases 8 and 9, indicating that TLR3 triggered the signaling of both the extrinsic and intrinsic apoptotic pathways. Poly(I-C) up-regulated tumor necrosis factor-related apoptosis-inducing ligand and its receptors, death receptors 4/5, resulting in initiating the extrinsic pathway. Furthermore, poly(I-C) down-regulated anti-apoptotic protein, B cell lymphoma 2 (Bcl-2), and up-regulated Noxa, a key Bcl-2 homology 3-only antagonist of Bcl-2, leading to the priming of the intrinsic pathway. A p53-related protein, the transactivating p63 isoform α (TAp63α), was induced by TLR3 activation and contributed to the activation of both the intrinsic and extrinsic apoptotic pathways. Both the cells deficient in p63 gene expression by RNA interference and cells that overexpressed the N-terminally truncated p63 isoform α (ΔNp63α), a dominant-negative variant of TAp63α, by gene transfection, survived TLR3 activation. Taken together, TAp63α is a crucial regulator downstream of TLR3 to induce cell death via death receptors and mitochondria.


Inflammation | 2011

TLR4 Activation Induces Nontolerant Inflammatory Response in Endothelial Cells

Wenmeng Wang; Minjie Deng; Xueting Liu; Wen Ai; Qizhu Tang; Jinyue Hu

In professional immune cells, Toll-like receptor 4 (TLR4) induces tightly regulated inflammatory response to avoid tissue damage via the induction of “endotoxin tolerance”, which is a transient state of cell desensitization in response to lipopolysaccharide (LPS) restimulation after a prior LPS exposure. However, in endothelial cells, the regulation of TLR4-induced inflammation is not fully understood. In this study, we found that the gene transcripts for a lot of Toll-like receptors were expressed in various endothelial cells, including human umbilical vein endothelial cells (HUVEC), human aortic endothelial cell (HAEC), and mouse microvascular endothelial cells (bEND.3). Proteins of TLR4 and its coreceptor CD14 were also detected in HUVEC. LPS treatment significantly upregulated the expression of proinflammation cytokines such as IL-1β, IL-6, and IL-8 only in HUVEC, but not in HAEC and bEND.3, suggesting that vein endothelial cells are important source of proinflammatory cytokines in response to LPS. Unexpectedly, “endotoxin tolerance” was not induced in endothelial cell, but was induced in control glial cells, as LPS pretreatment downregulated the cytokine expression in control glial cells, but did not in endothelial cells, when the cells were restimulated with LPS. The upregulation of cytokine gene expression was dependent on NF-κB signaling, and NF-κB inhibitor repressed the induction of cytokines. Two important signal molecules MyD88 and TRIF, which are TLR4 downstream and NF-κB upstream, were upregulated in vein endothelial cells but were downregulated in control glial cells. These results suggested that vein endothelial cells may play important roles in the pathophysiology of systemic inflammation-associated diseases such as sepsis and septic cardiomyopathy.


Journal of Cellular Biochemistry | 2011

P2Y11 impairs cell proliferation by induction of cell cycle arrest and sensitizes endothelial cells to cisplatin-induced cell death.

Zhilin Xiao; Mei Yang; Qingshan Lv; Wenmeng Wang; Minjie Deng; Xueting Liu; Qing He; Xiaobin Chen; Meifang Chen; Li Fang; Xiumei Xie; Jinyue Hu

Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP‐induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down‐regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin‐induced cell death by down‐regulation of the expression of Bcl‐2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells. J. Cell. Biochem. 112: 2257–2265, 2011.


Immunobiology | 2017

Both intrinsic and extrinsic apoptotic pathways are involved in Toll-like receptor 4 (TLR4)-induced cell death in monocytic THP-1 cells.

Bei Liu; Ruili Sun; Hongbo Luo; Xueting Liu; Manli Jiang; Chuang Yuan; Li Yang; Jinyue Hu

Our previous study showed that TLR3 induces apoptosis via both death receptors and mitochondial in human endothelial cells. We report here that the activation of TLR4 induced dose- and time-dependent cell death in moncytic THP-1 cells. LPS treatment of THP-1 cells induced the activation of both caspase 8 and 9, suggesting the involvement of intrinsic and extrinsic apoptosis pathways. TNFα was induced by TLR4 activation at both mRNA and protein levels, but its neutralization did not down-regulated TLR4-induced cell death. TLR4 activation also induced the up-regulation of TRAIL and its receptors DR4 and DR5, and the neutralization of TRAIL ameliorated TLR4 induced apoptosis, suggesting the involvement of TRAIL and its receptors DR4 and DR5 in LPS-induced cell death. Meanwhile, LPS treatment down-regulated the expression of FLICE inhibitory protein (FLIP), a suppressor of death receptor-induced cell death. In addition, TLR4 activation down-regulated the anti-apoptotic protein bcl-2, and up-regulated the pro-apoptotic proteins Noxa and Puma, suggesting that mitochondrial apoptotic pathway was also involved in LPS-induced cell death. Furthermore, we found that TAP63α might confer to the activation of intrinsic and extrinsic apoptotic pathways. The treatment of THP-1 cells with LPS induced the translocation of TAP63α from cytoplasm to nucleus. Taken together, our study suggested that both death receptors and mitochondial were involved in TLR4-induced cell death, and TAP63α may be a target for the prevention of LPS-induced cell death.


PLOS ONE | 2013

Polo-like kinase 1 (PLK1) is involved in toll-like receptor (TLR)-mediated TNF-α production in monocytic THP-1 cells.

Jinyue Hu; Guihua Wang; Xueting Liu; Lina Zhou; Manli Jiang; Li Yang

Polo-like kinases (PLKs) have been reported to be essential components of anti-viral pathways. However, the role of PLKs in the production of pro-inflammatory cytokines induced by TLR activation is uncertain. We report here that monocytic THP-1 cells expressed PLK1, PLK2, PLK3 and PLK4. When THP-1 cells were treated with GW843682X, an inhibitor of PLK1 and PLK3, the results showed that GW843682X down-regulated Pam3CSK4- and LPS-induced TNF-α at both the gene and protein levels. GW843682X did not impact Pam3CSK4-induced IL-1β and IL-8 or LPS-induced IL-1β, but it down-regulated LPS-induced IL-8 significantly. Moreover, western blot results showed that TLRs activated PLK1, and PLK1 inhibition by RNA interference down-regulated Pam3CSK4-induced TNF-α production, suggesting the involvement of PLK1 in TNF-α up-regulation. In addition, GW843682X treatment for 12 to 24 h induced cell death and down-regulated MyD88, but neither of these roles contributed to the down-regulation of TNF-α, as TNF-α gene expression was up-regulated at 1 h. Furthermore, GW843682X inhibited Pam3CSK4-induced activation of ERK and NF-κB, which contributed to Pam3CSK4-induced up-regulation of TNF-α. GW843682X also inhibited LPS-induced activation of ERK, p38 and NF-κB, which contributed to LPS-induced up-regulation of TNF-α. Taken together, these results suggested that PLK1 is involved in TLR2- and TLR4-induced inflammation, and GW843682X may be valuable for the regulation of the inflammatory response.


PLOS ONE | 2015

Pro-Inflammatory Cytokine IL-1β Up-Regulates CXC Chemokine Receptor 4 via Notch and ERK Signaling Pathways in Tongue Squamous Cell Carcinoma.

Yi Sun; Demao Zhu; Guihua Wang; Di Wang; Huashan Zhou; Xueting Liu; Manli Jiang; Lingjuan Liao; Zhiguang Zhou; Jinyue Hu

Chronic inflammation contributes to tumor development through the induction of oncogenic mutations, genomic instability, early tumor promotion, and enhanced angiogenesis. Here, we report that IL-1 receptor 1 (IL-1R1) was expressed in 40 of 41 human tongue squamous cell carcinomas (TSCC). IL-1β up-regulated the expression of CXCR4, a CXC chemokine receptor that mediates cancer growth and metastasis, at both mRNA and protein levels in Tca8113 TSCC cells. IL-1β treatment of Tca8113 cells promoted migration in response to CXCR4 ligand stromal-derived factor α (SDF-1α). The inhibition of IL-1R1 by its antagonist IL-1Ra or RNA interference significantly reversed the up-regulation of CXCR4 induced by IL-1β. IL-1R1 activation also up-regulated the expression of IL-1β itself, suggesting a positive feedback regulation of CXCR4 expression. Furthermore, IL-1β induced the activation of Notch, which was originally considered a stem cell regulator. Pharmacological inhibition of Notch signaling reversed the up-regulation of CXCR4 induced by IL-1β, suggesting that Notch signaling may be involved in the growth and metastasis of cancers via up-regulation of CXCR4. In addition, IL-1β induced the activation of extracellular signal regulated kinase (ERK) and ERK inhibition decreased the up-regulation of CXCR4 induced by IL-1β, suggesting the involvement of ERK signaling in cancer metastasis. Taken together these data suggest that IL-1β and IL-1R1 promote cancer growth and metastasis by up-regulating CXCR4 expression and that CXCR4 may be a link between inflammation and cancer.


Cell Biology International | 2012

Extracellular nucleotide inhibits cell proliferation and negatively regulates Toll-like receptor 4 signalling in human progenitor endothelial cells

Zhilin Xiao; Mei Yang; Li Fang; Qingshan Lv; Qing He; Minjie Deng; Xueting Liu; Xiaobin Chen; Meifang Chen; Xiumei Xie; Jinyue Hu

Extracellular nucleotides mediate a wide range of physiological effects by interacting with plasma membrane P2 purinergic receptors. P2 receptors are expressed in certain kinds of stem cells, and function to induce cytokine expression and to modulate cell proliferation. We have analysed the expression and the function of P2 receptors in human umbilical cord blood‐derived EPCs (endothelial progenitor cells). EPCs expressed P2X4,6,7 and P2Y2,4,11,13,14 receptors and extracellular ATP inhibited EPCs proliferation. As in a previous study, EPCs expressed functional TLR4 (Toll‐like receptor 4) and activation of TLR4 by LPS (lipopolysaccharide) evoked a pro‐inflammatory immune response. When human EPCs were stimulated with LPS and nucleotides, ATP or UTP inhibited the expression of pro‐inflammatory cytokines including MCP‐1 (monocyte chemoattractant protein‐1), IFNα (interferon α), TNFα (tumour necrosis factor α) and adhesion molecule VCAM‐1 (vascular cell adhesion molecule 1) induced by LPS. ATP and UTP also down‐regulated the gene expression of TLR4, CD14 and MyD88 (myeloid differentiation factor 88), a TLR adaptor molecule, and protein expression of CD14 and MyD88. Moreover, the phosphorylation of NF‐κB (nuclear factor κB) p65 induced by TLR4 activation was inhibited partly by ATP or UTP at concentrations of 1–5 μM. These results suggest that extracellular nucleotides negatively regulate EPCs proliferation and TLR4 signalling.


Scientific Reports | 2016

A20 regulates IL-1-induced tolerant production of CXC chemokines in human mesangial cells via inhibition of MAPK signaling.

Hongbo Luo; Yuming Liu; Qian Li; Lingjuan Liao; Ruili Sun; Xueting Liu; Manli Jiang; Jinyue Hu

Chemokines and chemokine receptors are involved in the resolution or progression of renal diseases. Locally secreted chemokines mediated leukocyte recruitment during the initiation and amplification phase of renal inflammation. However, the regulation of chemokine induction is not fully understood. In this study, we found that IL-1 induced a significant up-regulation of CXC chemokines CXCL1, 2, and 8 at both mRNA and protein levels in human mesangial cells. The induction of chemokines was tolerant, as the pre-treatment of HMC with IL-1 down-regulated the induction of chemokines induced by IL-1 re-stimulation. IL-1 up-regulated the ubiquintin-editing enzyme A20. A20 over-expression down-regulated IL-1-induced up-regulation of chemokines, and A20 down-regulation reversed chemokine inhibition induced by IL-1 pre-treatment, suggested that A20 played important roles in the tolerant production of chemokines. Unexpectedly, A20 over- expression inhibited the activation of ERK, JNK, and P38, but did not inhibit the activation of NF-κB. In addition, both IL-1 treatment and A20 over-expression induced the degradation of IRAK1, an important adaptor for IL-1R1 signaling, and A20 inhibition by RNA interference partly reversed the degradation of IRAK1. Taken together, IL-1-induced A20 negatively regulated chemokine production, suggesting that A20 may be an important target for the prevention and control of kidney inflammation.


PLOS ONE | 2014

A20 Is Critical for the Induction of Pam3CSK4-Tolerance in Monocytic THP-1 Cells

Jinyue Hu; Guihua Wang; Xueting Liu; Lina Zhou; Manli Jiang; Li Yang

A20 functions to terminate Toll-like receptor (TLR)-induced immune response, and play important roles in the induction of lipopolysacchride (LPS)-tolerance. However, the molecular mechanism for Pam3CSK4-tolerance is uncertain. Here we report that TLR1/2 ligand Pam3CSK4 induced tolerance in monocytic THP-1 cells. The pre-treatment of THP-1 cells with Pam3CSK4 down-regulated the induction of pro-inflammatory cytokines induced by Pam3CSK4 re-stimulation. Pam3CSK4 pre-treatment also down-regulated the signaling transduction of JNK, p38 and NF-κB induced by Pam3CSK4 re-stimulation. The activation of TLR1/2 induced a rapid and robust up-regulation of A20, suggesting that A20 may contribute to the induction of Pam3CSK4-tolerance. This hypothesis was proved by the observation that the over-expression of A20 by gene transfer down-regulated Pam3CSK4-induced inflammatory responses, and the down-regulation of A20 by RNA interference inhibited the induction of tolerance. Moreover, LPS induced a significant up-regulation of A20, which contributed to the induction of cross-tolerance between LPS and Pam3CSK4. A20 was also induced by the treatment of THP-1 cells with TNF-α and IL-1β. The pre-treatment with TNF-α and IL-1β partly down-regulated Pam3CSK4-induced activation of MAPKs. Furthermore, pharmacologic inhibition of GSK3 signaling down-regulated Pam3CSK4-induced A20 expression, up-regulated Pam3CSK4-induced inflammatory responses, and partly reversed Pam3CSK4 pre-treatment-induced tolerance, suggesting that GSK3 is involved in TLR1/2-induced tolerance by up-regulation of A20 expression. Taken together, these results indicated that A20 is a critical regulator for TLR1/2-induced pro-inflammatory responses.


International Immunopharmacology | 2011

The functional expression of TLR3 in EPCs impairs cell proliferation by induction of cell apoptosis and cell cycle progress inhibition

Mei Yang; Zhilin Xiao; Qingshan Lv; Xueting Liu; Lina Zhou; Xiaobin Chen; Meifang Chen; Li Fang; Xiumei Xie; Jinyue Hu

Toll-like receptor 3 (TLR3), a member of the TLR family that recognizes double-stranded RNA (dsRNA), plays an important role in antiviral immunity. TLR3 is widely expressed in various cells and the activation of TLR3 induces cell apoptosis in some cells. However, the effect of TLR3 on cell proliferation in endothelial progenitor cells (EPCs) is unclear. In this study, we found that EPCs expressed high levels of TLR1, 3, 4, and 6 and low levels of TLR2, 5, 7, 8, and 10. The treatment of EPCs with TLR3 agonist Poly I:C up-regulated the expression of cytokines IL-1β, IL-6, IL-8, TNF-α, IFN-α, and IFN-β, indicating that EPCs expressed functional TLR3. Moreover, Poly I:C treatment induced cell cycle progress inhibition and cell apoptosis, leading to the inhibition of cell proliferation. Further studies indicated that IL-1β was involved in TLR3-induced cell proliferation inhibition, as IL-1β inhibited cell proliferation in a dose-dependent manner, and the IL-1β receptor type I (IL-1R1)-neutralizing antibody ameliorated Poly I:C-induced cell proliferation inhibition. Taken together, these results suggest that Poly I:C impairs cell proliferation by inducing cell cycle progress inhibition and cell apoptosis via TLR3 in EPCs.

Collaboration


Dive into the Xueting Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiumei Xie

Central South University

View shared research outputs
Top Co-Authors

Avatar

Qingshan Lv

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xiaobin Chen

Central South University

View shared research outputs
Top Co-Authors

Avatar

Zhilin Xiao

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Yang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Meifang Chen

Central South University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge