Xuewei Chen
Academy of Military Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuewei Chen.
Experimental Neurology | 2012
Bo Cui; Lixing Zhu; Xiaojun She; Mingquan Wu; Qiang Ma; Tianhui Wang; Na Zhang; Chuanxiang Xu; Xuewei Chen; Gaihong An; Hongtao Liu
The non-auditory effects of noise exposure on the central nervous system have been established both epidemiologically and experimentally. Chronic noise exposure (CNE) has been associated with tau hyperphosphorylation and Alzheimers disease (AD)-like pathological changes. However, experimental evidence for these associations remains limited. The aim of the current study was to explore the effects of CNE [100 dB sound pressure level (SPL) white noise, 4 h/d×14 d] on tau phosphorylation in the rat hippocampus and the prefrontal cortex. Forty-eight male Wistar rats were randomly assigned to two groups: a noise-exposed group and a control group. The levels of radioimmunoprecipitation assay (RIPA)-soluble and RIPA-insoluble phosphorylated tau at Ser202, Ser396, Ser404, and Ser422 in the hippocampus and the prefrontal cortex were measured at different time points (days 0, 3, 7, and 14) after the end of the last noise exposure. Exposure to white noise for 14 consecutive days significantly increased the levels of tau phosphorylation at Ser202, Ser396, Ser404, and Ser422, the sites typically phosphorylated in AD brains, in the hippocampus and the prefrontal cortex. Tau hyperphosphorylation persisted for 7 to 14 d after the cessation of noise exposure. These alterations were also concomitant with the generation of pathological neurofibrillary tangle (NFT) tau 3, 7 and 14 d after the end of the stimulus. Furthermore, lasting increases in proteins involved in hyperphosphorylation, namely glycogen synthase kinase 3β (GSK3β) and protein phosphatase 2A (PP2A), were found to occur in close correspondence with increase in tau hyperphosphorylation. The results of this study show that CNE leads to long-lasting increases in non-NFT hyperphosphorylated tau and delayed formation of misfolded NFT tau in the hippocampus and the prefrontal cortex. Our results also provide evidence for the involvement of GSK3β and PP2A in these processes.
Oncology Letters | 2013
Hua Li; Ziquan Liu; Chuanxiang Xu; Yunyun Chen; Jianwei Zhang; Bo Cui; Xuewei Chen; Gaihong An; Xiaojun She; Hongtao Liu; Zifeng Jiang; Tianhui Wang
The aim of this study was to determine the correlation of S100A4 expression with the progression, prognosis and clinical pathology of gastric cancer (GC) in young pateints. A total of 85 tumor tissues with corresponding adjacent normal tissues and 62 non-metastatic lymph nodes (LNs) with corresponding metastatic LNs were obtained from young GC patients (<40 years old) who underwent surgery between January 2001 and December 2006. The expression of S100A4 was detected by RT-PCR and immunohistochemistry. Differences in the expression of S100A4 mRNA or protein were observed among the GC tissues, matched normal gastric mucosa, non-metastatic LNs and metastatic LNs. The expression of S100A4 mRNA and protein in GC tissues and metastatic LNs was significantly higher compared with that in the matched normal gastric mucosa and non-metastatic LNs, respectively (P<0.05). The overexpression of S100A4 was significantly associated with parameters involved in tumor progression and poor prognosis, including tumor size (P=0.017), Lauren classification (P=0.002), histological classification (P= 0.010), histological differentiation (P= 0.000), Borrmann classification (P=0.020), tumor-node-metastasis (TNM) stage (P=0.000), LN metastasis (P=0.000) and distant metastasis (P=0.024). Multivariate analysis suggested that patient age (P=0.035), tumor size (P=0.002), TNM stage (P=0.001) and S100A4 upregulation (P=0.000) were independent prognostic indicators for the disease. The overexpression of S100A4 in young GC patients is significantly associated with the clinicopathological characteristics. S100A4 may be used as a biomarker to predict the progression and poor prognosis of GC in young patients.
Scientific Reports | 2015
Bo Cui; Kang Li; Zhihui Gai; Xiaojun She; Na Zhang; Chuanxiang Xu; Xuewei Chen; Gaihong An; Qiang Ma; Rui Wang
A putative etiological association exists between noise exposure and Alzheimer’s disease (AD). Amyloid-β (Aβ) pathology is thought to be one of the primary initiating factors in AD. It has been further suggested that subsequent dysregulation of Aβ may play a mechanistic role in the AD-like pathophysiology associated with noise exposure. Here, we used ELISA, immunoblotting, cytokine arrays, and RT-PCR, to examine both hippocampal Aβ pathology and neuroinflammation in rats at different time points after noise exposure. We found that chronic noise exposure significantly accelerated the progressive overproduction of Aβ, which persisted for 7 to 14 days after the cessation of exposure. This effect was accompanied by up-regulated expression of amyloid precursor protein (APP) and its cleavage enzymes, β- and γ-secretases. Cytokine analysis revealed that chronic noise exposure increased levels of tumor necrosis factor-α and the receptor for advanced glycation end products, while decreasing the expression of activin A and platelet-derived growth factor- AA. Furthermore, we found persistent elevations of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 expression that closely corresponded to the noise-induced increases in Aβ and neuroinflammation. These studies suggest that lifelong environmental noise exposure may have cumulative effects on the onset and development of AD.
Journal of the Neurological Sciences | 2014
Kang Li; Hengchuan Jia; Xiaojun She; Bo Cui; Na Zhang; Xuewei Chen; Chuanxiang Xu; Gaihong An; Qiang Ma
Chronic noise exposure has been associated with abnormalities in glutamate (Glu)-NMDAR signaling and tau hyperphosphorylation. However, further studies are necessary to clarify potential causal relationships. The aim of the present study was to evaluate the role of NMDA receptors in noise-induced tau hyperphosphorylation in the rat hippocampus and prefrontal cortex. Male Wistar rats were randomly divided into three groups in the present study: control with isotonic saline instillation (n=10); noise exposure (100 dB SPL white noise, 4h/d × 14d) and treated with saline (n=10); and noise exposure and treated with MK-801 (0.5mg/kg, intraperitoneally; n=10). The levels of tau phosphorylated at Ser202 and Ser396, and proteins involved in hyperphosphorylation, namely glycogen synthase kinase 3β (GSK3β) and protein phosphatase 2A (PP2A), were measured in the hippocampus and prefrontal cortex (PFC) after the last noise exposure. We showed that phosphorylated tau levels were enhanced in noise-exposed-rat hippocampus and PFC. MK-801 decreased the hyperphosphorylation of tau at Ser202 and Ser396 sites in the hippocampus and PFC. Furthermore, MK-801 reversed noise-induced GSK3β overexpression but had no significant effect on PP2A levels. This suggests that MK-801 protects against chronic-noise-induced tau hyperphosphorylation in the hippocampus and PFC. These findings demonstrate that Glu-NMDAR signaling may be involved in triggering aberrant tau hyperphosphorylation in the hippocampus and PFC after chronic noise exposure.
Scientific Reports | 2018
Donghong Su; Wenlong Li; Xiaojun She; Xuewei Chen; Qingfeng Zhai; Bo Cui; Rui Wang
Non-genetic environmental hazards are thought to be associated with genetic susceptibility factors that increase Alzheimer’s disease (AD) pathogenesis. Aging and chronic noise exposure have been considered important factors in the AD. Here, we investigated the impact of chronic noise exposure on the AD-like neuropathology in the senescence-accelerated prone mouse (SAMP8) and the underlying mechanisms of such effects. We examined the consequences of AD-like neuropathology in 3-month-old SAMP8 mice using low- and high-intensity noise exposure and 8-month-old SAMP8 mice as aging positive controls. Immunoblotting and immunohistochemistry were conducted to examine AD-like pathological changes and potential mechanisms. Chronic noise exposure led to progressive overproduction of Aβ and increased the hyperphosphorylation of tau at Ser396, Thr205, and Thr231 sites in the hippocampus and the prefrontal cortex (PFC) in young SAMP8 mice, similar to that observed in aging SAMP8 mice. Both noise exposure and aging could cause a significant downregulation in Wnt signaling expression. These findings demonstrate that chronic noise stress exacerbated AD-like neuropathology, possibly by disrupting Wnt signaling and triggering aberrant tau hyperphosphorylation and Aβ in the PFC and hippocampus.
Chinese journal of applied physiology | 2016
Huan-rui Sun; Na Zhang; Xuewei Chen; Gaihong An; Chuanxiang Xu; Qiang Ma
Archive | 2012
Tianhui Wang; Yunyun Chen; Ziquan Liu; Chuanxiang Xu; Degang Wang; Bo Cui; Xiaojun She; Na Zhang; Xuewei Chen; Gaihong An; Hongtao Liu
Archive | 2013
Songbai Liao; Qiang Ma; Gaihong An; Na Zhang; Chuanxiang Xu; Bo Cui; Xiaojun She; Ron Fan; Yongcong Shao; Xuewei Chen
Chinese journal of applied physiology | 2013
Na Zhang; Qiang Ma; Xuewei Chen; Chuanxiang Xu; Gaihong An; Bo Cui; She Xj
Archive | 2012
Tianhui Wang; Yunyun Chen; Ziquan Liu; Chuanxiang Xu; Degang Wang; Bo Cui; Xiaojun She; Xuewei Chen; Na Zhang; Gaihong An; Hongtao Liu