Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuewen Pan is active.

Publication


Featured researches published by Xuewen Pan.


Microbiology and Molecular Biology Reviews | 2000

Signal Transduction Cascades Regulating Fungal Development and Virulence

Klaus B. Lengeler; Robert C. Davidson; Cletus D'souza; Toshiaki Harashima; Wei-Chiang Shen; Ping Wang; Xuewen Pan; Michael S. Waugh; Joseph Heitman

SUMMARY Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms.


Molecular and Cellular Biology | 1999

Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae.

Xuewen Pan; Joseph Heitman

ABSTRACT In response to nitrogen starvation, diploid cells of the yeastSaccharomyces cerevisiae differentiate to a filamentous growth form known as pseudohyphal differentiation. Filamentous growth is regulated by elements of the pheromone mitogen-activated protein (MAP) kinase cascade and a second signaling cascade involving the receptor Gpr1, the Gα protein Gpa2, Ras2, and cyclic AMP (cAMP). We show here that the Gpr1-Gpa2-cAMP pathway signals via the cAMP-dependent protein kinase, protein kinase A (PKA), to regulate pseudohyphal differentiation. Activation of PKA by mutation of the regulatory subunit Bcy1 enhances filamentous growth. Mutation and overexpression of the PKA catalytic subunits reveal that the Tpk2 catalytic subunit activates filamentous growth, whereas the Tpk1 and Tpk3 catalytic subunits inhibit filamentous growth. The PKA pathway regulates unipolar budding and agar invasion, whereas the MAP kinase cascade regulates cell elongation and invasion. Epistasis analysis supports a model in which PKA functions downstream of the Gpr1 receptor and the Gpa2 and Ras2 G proteins. Activation of filamentous growth by PKA does not require the transcription factors Ste12 and Tec1 of the MAP kinase cascade, Phd1, or the PKA targets Msn2 and Msn4. PKA signals pseudohyphal growth, in part, by regulating Flo8-dependent expression of the cell surface flocculin Flo11. In summary, the cAMP-dependent protein kinase plays an intimate positive and negative role in regulating filamentous growth, and these findings may provide insight into the roles of PKA in mating, morphogenesis, and virulence in other yeasts and pathogenic fungi.


Molecular and Cellular Biology | 2002

Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation.

Xuewen Pan; Joseph Heitman

ABSTRACT The yeast Saccharomyces cerevisiae undergoes a dimorphic filamentous transition in response to nutrient cues that is affected by both mitogen-activated protein kinase and cyclic AMP-protein kinase A signaling cascades. Here two transcriptional regulators, Flo8 and Sfl1, are shown to be the direct molecular targets of protein kinase A. Flo8 and Sfl1 antagonistically control expression of the cell adhesin Flo11 via a common promoter element. Phosphorylation by the protein kinase A catalytic subunit Tpk2 promotes Flo8 binding and activation of the Flo11 promoter and relieves repression by prohibiting dimerization and DNA binding by Sfl1. Our studies illustrate in molecular detail how protein kinase A combinatorially effects a key developmental switch. Similar mechanisms may operate in pathogenic fungi and more complex multicellular eukaryotic organisms.


Current Opinion in Microbiology | 2000

Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae.

Xuewen Pan; Toshiaki Harashima; Joseph Heitman

In response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous pseudohyphal growth. At least two signaling pathways regulate filamentation. One involves components of the MAP kinase cascade that also regulates mating of haploid cells. The second involves a nutrient-sensing G-protein-coupled receptor that signals via an unusual G(alpha) protein, cAMP and protein kinase A. Recent studies reveal crosstalk between these pathways during pseudohyphal growth. Related MAP kinase and cAMP pathways regulate filamentation and virulence of human and plant fungal pathogens, and represent novel targets for antifungal drug design.


Molecular Systems Biology | 2005

Gene function prediction from congruent synthetic lethal interactions in yeast

Ping Ye; Brian D. Peyser; Xuewen Pan; Jef D. Boeke; Forrest Spencer; Joel S. Bader

We predicted gene function using synthetic lethal genetic interactions between null alleles in Saccharomyces cerevisiae. Phenotypic and protein interaction data indicate that synthetic lethal gene pairs function in parallel or compensating pathways. Congruent gene pairs, defined as sharing synthetic lethal partners, are in single pathway branches. We predicted benomyl sensitivity and nuclear migration defects using congruence; these phenotypes were uncorrelated with direct synthetic lethality. We also predicted YLL049W as a new member of the dynein–dynactin pathway and provided new supporting experimental evidence. We performed synthetic lethal screens of the parallel mitotic exit network (MEN) and Cdc14 early anaphase release pathways required for late cell cycle. Synthetic lethal interactions bridged genes in these pathways, and high congruence linked genes within each pathway. Synthetic lethal interactions between MEN and all components of the Sin3/Rpd3 histone deacetylase revealed a novel function for Sin3/Rpd3 in promoting mitotic exit in parallel to MEN. These in silico methods can predict phenotypes and gene functions and are applicable to genomic synthetic lethality screens in yeast and analogous RNA interference screens in metazoans.


Genome Research | 2013

DANPOS: Dynamic analysis of nucleosome position and occupancy by sequencing

Kaifu Chen; Yuanxin Xi; Xuewen Pan; Zhaoyu Li; Klaus H. Kaestner; Jessica K. Tyler; Sharon Y.R. Dent; Xiangwei He; Wei Li

Recent developments in next-generation sequencing have enabled whole-genome profiling of nucleosome organizations. Although several algorithms for inferring nucleosome position from a single experimental condition have been available, it remains a challenge to accurately define dynamic nucleosomes associated with environmental changes. Here, we report a comprehensive bioinformatics pipeline, DANPOS, explicitly designed for dynamic nucleosome analysis at single-nucleotide resolution. Using both simulated and real nucleosome data, we demonstrated that bias correction in preliminary data processing and optimal statistical testing significantly enhances the functional interpretation of dynamic nucleosomes. The single-nucleotide resolution analysis of DANPOS allows us to detect all three categories of nucleosome dynamics, such as position shift, fuzziness change, and occupancy change, using a uniform statistical framework. Pathway analysis indicates that each category is involved in distinct biological functions. We also analyzed the influence of sequencing depth and suggest that even 200-fold coverage is probably not enough to identify all the dynamic nucleosomes. Finally, based on nucleosome data from the human hematopoietic stem cells (HSCs) and mouse embryonic stem cells (ESCs), we demonstrated that DANPOS is also robust in defining functional dynamic nucleosomes, not only in promoters, but also in distal regulatory regions in the mammalian genome.


Genes & Development | 2008

A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation

Yu Yi Lin; Yan Qi; Jin Ying Lu; Xuewen Pan; Daniel S. Yuan; Yingming Zhao; Joel S. Bader; Jef D. Boeke

Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular viability, and led us to show that deacetylation of the histone variant Htz1p at Lys 14 is mediated by Hda1p. Studies of the essential nucleosome acetyltransferase of H4 (NuA4) revealed acetylation-dependent protein stabilization of Yng2p, a potential nonhistone substrate of NuA4 and Rpd3C, and led to a new functional organization model for this critical complex. We also found that DNA double-stranded breaks (DSBs) result in local recruitment of the NuA4 complex, followed by an elaborate NuA4 remodeling process concomitant with Rpd3p recruitment and histone deacetylation. These new characterizations of the HDA and NuA4 complexes demonstrate how systematic analyses of genetic interactions may help illuminate the mechanisms of intricate cellular processes.


PLOS Genetics | 2010

A Microarray-Based Genetic Screen for Yeast Chronological Aging Factors

Mirela Matecic; Daniel L. Smith; Xuewen Pan; Nazif Maqani; Stefan Bekiranov; Jef D. Boeke; Jeffrey S. Smith

Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA “bar-code” sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Δ mutant and exacerbated by a short-lived atg16Δ autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.


Molecular and Cellular Biology | 2000

Sok2 Regulates Yeast Pseudohyphal Differentiation via a Transcription Factor Cascade That Regulates Cell-Cell Adhesion

Xuewen Pan; Joseph Heitman

ABSTRACT In response to nitrogen limitation, Saccharomyces cerevisiae undergoes a dimorphic transition to filamentous pseudohyphal growth. In previous studies, the transcription factor Sok2 was found to negatively regulate pseudohyphal differentiation. By genome array and Northern analysis, we found that genes encoding the transcription factors Phd1, Ash1, and Swi5 were all induced insok2/sok2 hyperfilamentous mutants. In accord with previous studies of others, Swi5 was required for ASH1 expression. Phd1 and Ash1 regulated expression of the cell surface protein Flo11, which is required for filamentous growth, and were largely required for filamentation of sok2/sok2 mutant strains. These findings reveal that a complex transcription factor cascade regulates filamentation. These findings also reveal a novel dual role for the transcription factor Swi5 in regulating filamentous growth. Finally, these studies illustrate how mother-daughter cell adhesion can be accomplished by two distinct mechanisms: one involving Flo11 and the other involving regulation of the endochitinase Cts1 and the endoglucanase Egt2 by Swi5.


Genetics | 2007

Efficient Tor Signaling Requires a Functional Class C Vps Protein Complex in Saccharomyces cerevisiae

Sara A. Zurita-Martinez; Rekha Puria; Xuewen Pan; Jef D. Boeke; Maria E. Cardenas

The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.

Collaboration


Dive into the Xuewen Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Yuan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joel S. Bader

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ping Ye

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Wang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Forrest Spencer

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brian D. Peyser

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kaifu Chen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Wei Li

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge