Xuexia Lin
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuexia Lin.
Biosensors and Bioelectronics | 2016
Xuexia Lin; Ka-Ho Leung; Ling Lin; Luyao Lin; Sheng Lin; Chung-Hang Leung; Dik-Lung Ma; Jin-Ming Lin
In this paper, we rationally design a novel G-quadruplex-selective luminescent iridium (III) complex for rapid detection of oligonucleotide and VEGF165 in microfluidics. This new probe is applied as a convenient biosensor for label-free quantitative analysis of VEGF165 protein from cell metabolism, as well as for studying the kinetics of the aptamer-protein interaction combination with a microfluidic platform. As a result, we have successfully established a quantitative analysis of VEGF165 from cell metabolism. Furthermore, based on the principles of hydrodynamic focusing and diffusive mixing, different transient states during kinetics process were monitored and recorded. Thus, the combination of microfluidic technique and G-quadruplex luminescent probe will be potentially applied in the studies of intramolecular interactions and molecule recognition in the future.
Scientific Reports | 2013
Qiushui Chen; Jing Wu; Qichen Zhuang; Xuexia Lin; Jie Zhang; Jin-Ming Lin
Engineered artificial tissues from stem cells show great potential in regenerative medicine, disease therapies and organ transplantation. To date, stem cells are typically co-cultured with inactivated feeder layers to maintain their undifferentiated state, and to ensure reliable cell purity. Herein, we propose a novel microfabricated approach for feeder-separated coculture of mouse embryonic stem (mES) cells on polydimethylsiloxane (PDMS) porous membrane-assembled 3D-microdevice. Normal mouse embryonic fibroblasts (mEFs) without inactivation were specifically co-cultured with mES cells, resulting in the formation of mES cell colonies on spatially controlled co-culture with feeder layers. An excellent undifferentiated state was confirmed by the expressions of Nanog, octamer binding protein 4 (Oct-4) and alkaline phosphatase (ALP) after 5 days culture. As a result, with the significant advantages of efficiency and simplicity, pure mES cell populations (a purity of 89.2%) from mEFs co-cultures were easily collected without any further purification or separation.
Scientific Reports | 2015
Xuexia Lin; Qiushui Chen; Wu Liu; Jie Zhang; Shiqi Wang; Zhi-Xiong Lin; Jin-Ming Lin
In this work, we report an integrated microfluidic device for cell co-culture under different concentrations of oxygen, in which the secreted protein VEGF165 was on-line qualitatively and semi-quantitatively analyzed by functional nucleic acid, hemin, ABTS and peroxide system. This microfluidic platform allowed investigation of various oxygen and distances effect on cell-to-cell communication. Besides, the microfluidic device was used for real-time analysis of VEGF165 protein by aptamer-functionalized microchannels. Under 5% O2 condition, we found that the migration of CaSki cells was faster than the migration of human umbilical vein endothelial cells. However, the migration of CaSki cells was slower than the migration of HUVECs under 15% O2 condition. Moreover, the shorter intercellular distances, the quicker cells migration. Furthermore, HIF-1α and VEGF165 genes, ROS were analyzed, and the results would provide new perspectives for the diagnosis and medical treatment of cervical cancer.
Biosensors and Bioelectronics | 2015
Xuexia Lin; Qiushui Chen; Wu Liu; Linglu Yi; Haifang Li; Zhihua Wang; Jin-Ming Lin
A simple and rapid method for multiplex protein assay based on tunable aptamer by microchip electrophoresis has been developed. Different lengths of aptamers can modulate the electrophoretic mobility of proteins, allowing the protein molecules to be effectively separated in hydroxyethyl cellulose buffer with 1.00 mM magnesium ion. A non-specific DNA was exploited as an internal standard to achieve the quantitative assay and to reduce the interference. A fluorescence dye SYBR gold was exploited to improve the sensitivity and to suppress the interference from sample matrix. Under optimum conditions, quantitative assay of PDGF-BB (R(2)=0.9986), VEGF165 (R(2)=0.9909), and thrombin (R(2)=0.9947) were achieved with a dynamic range in the 5.00-150.0 nM and RSDs in the 5.87-16.3% range. The recoveries were varied from 83.6% to 113.1%. Finally, the proposed method was successfully applied to analyze cell secretions, and then the concentration of PDGF-BB and VEGF165 were detected from 5.15 nM to 2.03 nM, and 3.14 to 2.53 nM, respectively, indicating the established method can be used to analyze cell secretions.
Advanced Healthcare Materials | 2015
Qiushui Chen; Ziyi He; Wu Liu; Xuexia Lin; Jing Wu; Haifang Li; Jin-Ming Lin
Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis.
Talanta | 2013
Xuexia Lin; Jing Wu; Haifang Li; Zhihua Wang; Jin-Ming Lin
In this work, a simple and convenient method for the detection of mini-short tandem repeat (miniSTR) loci has been developed by the combination of polymerase chain reaction (PCR) and microchip electrophoresis (MCE). Degraded or inhibitor DNA greatly limited STR loci analysis. Therefore, The proper primers was designed as close as possible to the STRs region to produce smaller size STRs, and made the assay suitable for the destroyed samples. Two annealing temperatures were applied in one PCR procedure and the corresponding cycle numbers were studied to improve the sensitivity of PCR reaction. Under optimal conditions, 0.001 ng DNA templates were enough to generate miniSTRs. The relative standard deviations (n=3) of the size fifteen miniSTRs from DNA9947A ranged from 0.49% to 4.41%. The RSDs of concentrations were between 0.94% and 4.95%. Fifteen miniSTRs were also well produced from human hair, indicating that the method has great potential application in criminal identification and paternity testing.
Talanta | 2015
Yong Deng; Linglu Yi; Xuexia Lin; Ling Lin; Haifang Li; Jin-Ming Lin
Bladder cancer (BC) cells spontaneously exfoliated in the urine of patients with BC. Detection of exfoliated tumor cells has clinical significance in cancer therapy because it would enable earlier non-invasive screening, diagnosis, or prognosis of BC. In this research, a method for analyzing genetic abnormalities of BC cells collected from urine samples was developed. Target BC cells were isolated by filtration. To find conditions that achieve high cell recovery, we investigated the effects of filter type, concentration of fixative, and flow rate. Cells captured on the filter membrane were completely retrieved within 15s. Selected genes for genomic analysis, mutated genes (FGFR3, TERT and HRAS) and methylated genes (ALX4, RALL3, MT1A, and RUNX3) were amplified by polymerase chain reaction (PCR), and subsequently, were identified by microchip electrophoresis (MCE). Analysis by MCE reduces the risk of contamination, sample consumption, and analysis time. Our developed approach is economical, effectively isolates cancer cells, and permits flexible molecular characterization, all of which make this approach a promising method for non-invasive BC detection.
Analyst | 2015
Quanli Liu; Xuexia Lin; Luyao Lin; Linglu Yi; Haifang Li; Jin-Ming Lin
Research towards nucleic acid amplification technologies for detection of human papillomavirus (HPV) 16 E6/E7 mRNA was carried out in combination with microchip electrophoresis (MCE). The approaches of nucleic acid sequence based amplification (NASBA), one-step RT-PCR and two-step RT-PCR were successfully developed. NASBA was a simple enzymatic reaction, which directly amplified HPV16 mRNA by isothermal amplification, leaving out the complex and tedious operation. One-step RT-PCR simplified the amplification step, while two-step RT-PCR was more sensitive and less vulnerable to the interference. Furthermore, instead of gel electrophoresis, microchip electrophoresis (MCE) for RNA assay was employed to realize high-throughput and rapid analysis. Finally, the results show that PCR-based or NASBA-based mRNA tests are valuable for HPV mRNA assay, which can be potentially applied for clinical diagnosis and prognosis of cervical and other anogenital carcinoma.
RSC Advances | 2014
Jing Wu; Haifang Li; Qiushui Chen; Xuexia Lin; Wu Liu; Jin-Ming Lin
This paper reports a novel method for the statistical analysis of quantum dot (QD) cytotoxicity and cellular uptake based on single cell cycles, which is part of a series of works on the study of QD cytotoxicity using a microfluidic system (Lab Chip, 2012, 12, 3474–3480; 2013, 13, 1948–1954). The specially designed microfluidic system consisted of a polydimethylsiloxane (PDMS) microwell array for single-cell arrangement and microchannels for QD solution diffusion, enabling effective control of stable cell density and the interdistance between them, as well as maintaining a constant QD concentration with no disturbance of the fluids which can affect cellular uptake. We showed that the treatment of QDs had no influence on cell cycles. However, the QD cytotoxicity was found to be dependent on cellular uptake in various cell cycle phases, because the accumulation and dilution of QDs happened in single cell cycles. The rank of QD cytotoxicity was G2/M > S > G0/G1. Thus, this technology could serve as a new strategy to investigate otherwise inaccessible mechanisms governing nanoparticle cytotoxicity.
Analytical Chemistry | 2017
Ling Lin; Xuexia Lin; Luyao Lin; Qiang Feng; Takehiko Kitamori; Jin-Ming Lin; Jiashu Sun
Interaction between tumor and endothelial cells could affect tumor growth and progression and induce drug resistance during cancer therapy. Investigation of tumor-endothelial cell interaction involves cell coculture, protein detection, and analysis of drug metabolites, which are complicated and time-consuming. In this work, we present an integrated microfluidic device with three individual components (cell coculture component, protein detection component, and pretreatment component for drug metabolites) to probe the interaction between tumor and endothelial cells. Cocultured cervical carcinoma cells (CaSki cells) and human umbilical vein endothelial cells (HUVECs) show higher resistance to chemotherapeutic agents than single-cultured cells, indicated by higher cell viability, increased expression of angiogenic proteins, and elevated level of paclitaxel metabolites under coculture conditions. This integrated microfluidic platform with multiple functions facilitates understanding of the interaction between tumor and endothelial cells, and it may become a promising tool for drug screening within an engineered tumor microenvironment.