Xuexia Miao
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuexia Miao.
Insect Science | 2013
Hao Zhang; Haichao Li; Xuexia Miao
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.
PLOS ONE | 2011
Yubing Wang; Hao Zhang; Haichao Li; Xuexia Miao
The key of RNAi approach success for potential insect pest control is mainly dependent on careful target selection and a convenient delivery system. We adopted second-generation sequencing technology to screen RNAi targets. Illuminas RNA-seq and digital gene expression tag profile (DGE-tag) technologies were used to screen optimal RNAi targets from Ostrinia furnalalis. Total 14690 stage specific genes were obtained which can be considered as potential targets, and 47 were confirmed by qRT-PCR. Ten larval stage specific expression genes were selected for RNAi test. When 50 ng/µl dsRNAs of the genes DS10 and DS28 were directly sprayed on the newly hatched larvae which placed on the filter paper, the larval mortalities were around 40∼50%, while the dsRNAs of ten genes were sprayed on the larvae along with artificial diet, the mortalities reached 73% to 100% at 5 d after treatment. The qRT-PCR analysis verified the correlation between larval mortality and the down-regulation of the target gene expression. Topically applied fluorescent dsRNA confirmed that dsRNA did penetrate the body wall and circulate in the body cavity. It seems likely that the combination of DGE-tag with RNA-seq is a rapid, high-throughput, cost less and an easy way to select the candidate target genes for RNAi. More importantly, it demonstrated that dsRNAs are able to penetrate the integument and cause larval developmental stunt and/or death in a lepidopteron insect. This finding largely broadens the target selection for RNAi from just gut-specific genes to the targets in whole insects and may lead to new strategies for designing RNAi-based technology against insect damage.
PLOS ONE | 2009
Yong Zhang; Xue Zhou; Xie Ge; Jiang-Hao Jiang; M. S. Li; Shihai Jia; Xiaonan Yang; Yun-Chao Kan; Xuexia Miao; Guoping Zhao; Fei Li; Yongping Huang
MicroRNAs (miRNAs) are endogenous non-coding genes that participate in post-transcription regulation by either degrading mRNA or blocking its translation. It is considered to be very important in regulating insect development and metamorphosis. We conducted a large-scale screening for miRNA genes in the silkworm Bombyx mori using sequence-by-synthesis (SBS) deep sequencing of mixed RNAs from egg, larval, pupal, and adult stages. Of 2,227,930 SBS tags, 1,144,485 ranged from 17 to 25 nt, corresponding to 256,604 unique tags. Among these non-redundant tags, 95,184 were matched to the silkworm genome. We identified 3,750 miRNA candidate genes using a computational pipeline combining RNAfold and TripletSVM algorithms. We confirmed 354 miRNA genes using miRNA microarrays and then performed expression profile analysis on these miRNAs for all developmental stages. While 106 miRNAs were expressed in all stages, 248 miRNAs were egg- and pupa-specific, suggesting that insect miRNAs play a significant role in embryogenesis and metamorphosis. We selected eight miRNAs for quantitative RT-PCR analysis; six of these were consistent with our microarray results. In addition, we searched for orthologous miRNA genes in mammals, a nematode, and other insects and found that most silkworm miRNAs are conserved in insects, whereas only a small number of silkworm miRNAs has orthologs in mammals and the nematode. These results suggest that there are many miRNAs unique to insects.
Fungal Biology | 2005
Sibao Wang; Xuexia Miao; Weiguo Zhao; Bo Huang; Meizhen Fan; Zengzhi Li; Yongping Huang
Inter-simple sequence repeat (ISSR) markers were used to investigate genetic diversity among 39 isolates of Beauveria spp. (36 B. bassiana, one B. brongniartii, one B. amorpha, and one B. velata) isolated from different insect hosts and geographical origins. Eighteen among 33 primers that contained different simple sequence repeats (SSR) were chosen for their reproducibility and high polymorphism. Considerable intraspecific and interspecific variability among the isolates of Beauveria spp. was revealed. One hundred sixty-eight highly reproducible fragments were amplified in all 39 isolates with an average of 9.3 markers per primer; among these, 161 (95.8%) were polymorphic. For 36 B. bassiana isolates, 8.9 (1-13) markers per primer were scored, and a total of 123 fragments were amplified, in which 102 (82.9%) were polymorphic. Among the 168 polymorphic bands, 7 bands were considered to be specific for B. brongniartii isolate Bbr06, 14 bands for B. amorpha isolate Ba08, and 18 bands for B. velata isolate Bv0. Within 36 B. bassiana isolates, genetic similarity ranged from 0.651 to 0.972. However, the genetic similarity values among different Beauveria species ranged from 0.411 to 0.720, suggesting that ISSR technique was successful in differentiating the three closely related species from B. bassiana. The results also indicated that there was a certain association between B. bassiana isolates and their geographical origins, but no clear correlation between those isolates and their insect hosts. The present study suggested that ISSR markers can be used as robust molecular markers for the population genetics, epidemiological and ecological studies of entomopathogenic fungi.
Insect Biochemistry and Molecular Biology | 2008
Arièle Legendre; Xuexia Miao; Jean-Luc Da Lage; Claude Wicker-Thomas
Drosophila species exhibit polymorphism in female pheromonal cuticular hydrocarbons, with 7-monoenes produced in Drosophila simulans and 7,11-dienes in most populations of Drosophila melanogaster (5,9-dienes in several African populations). A female-biased desaturase, desatF, expressed only in D. melanogaster is involved in the synthesis of 7,11-dienes. We investigated the role of desatF in 5,9-diene flies. We constructed a 5,9-diene strain knock-down for desatF and showed that desatF is involved in 5,9-diene formation. We also studied D. melanogaster/D. simulans hybrids. These hybrid females produced dienes and received normal courtship from D. melanogaster males, but copulation success was reduced. With D. simulans males, courtship was decreased and no copulation occurred. Hybrids with a chromosomal deletion of the D. melanogaster desatF gene had no dienes and received normal courtship from D. simulans males; depending on the D. simulans parental strain, 7-19% of them succeeded in mating. D. simulans desatF promoter region shows 21-23% gaps and 86-89% identity with D. melanogaster promoter region, the coding region 93-94% identity, depending on the strain. These differences could explain the functional polymorphism of desatF observed between both species, contributing to different cuticular hydrocarbon profiles, that constitute an effective barrier between species.
Plant Cell and Environment | 2015
Haichao Li; Ruobing Guan; Huimin Guo; Xuexia Miao
Insect double-stranded (ds)RNA expression in transgenic crops can increase plant resistance to biotic stress; however, creating transgenic crops to defend against every insect pest is impractical. Arabidopsis Mob1A is required for organ growth and reproduction. When Arabidopsis roots were soaked in dsMob1A, the root lengths and numbers were significantly suppressed and plants could not bolt or flower. Twenty-four hours after rice roots were immersed in fluorescent-labelled dsEYFP (enhanced yellow fluorescent protein), fluorescence was observed in the rice sheath and stem and in planthoppers feeding on the rice. The expression levels of Ago and Dicer in rice and planthoppers were induced by dsEYFP. When rice roots were soaked in dsActin, their growth was also significantly suppressed. When planthoppers or Asian corn borers fed on rice or maize that had been irrigated with a solution containing the dsRNA of an insect target gene, the insects mortality rate increased significantly. Our results demonstrate that dsRNAs can be absorbed by crop roots, trigger plant and insect RNAi and enhance piercing-sucking and stem-borer insect mortality rates. We also confirmed that dsRNA was stable under outdoor conditions. These results indicate that the root dsRNA soaking can be used as a bioinsecticide strategy during crop irrigation.
Zeitschrift für Naturforschung C | 2004
Jinying Peng; Xiaojun Deng; Jianhua Huang; Shihai Jia; Xuexia Miao; Yongping Huang
We investigated the role of the salicylic acid (SA) signaling pathway in defense responses of tomato plants to the herbivore, cotton bollworm. After exposure to the cotton bollworm, tomato leaves rapidly accumulated a high level of SA. The transcription of PR1 and BGL2 genes, the marker genes of SA pathway, was up-regulated. An enhanced endogenous SA level was accompanied by an increase in the endogenous H2O2 level as compared with controls. Spraying tomato plants with a solution containing either SA or methyl salicylic acid (Me-SA), the H2O2 level dramatically increased. These data proved that the SA pathway was involved in the tomato plant defense responses to the herbivore.
BMC Genomics | 2009
Shuai Zhan; Jianhua Huang; Qiuhong Guo; Yunpo Zhao; Weihua Li; Xuexia Miao; Marian R. Goldsmith; M. S. Li; Yongping Huang
BackgroundBombyx mori, the domesticated silkworm, is a well-studied model insect with great economic and scientific significance. Although more than 400 mutations have been described in silkworms, most have not been identified, especially those affecting economically-important traits. Simple sequence repeats (SSRs) are effective and economical tools for mapping traits and genetic improvement. The current SSR linkage map is of low density and contains few polymorphisms. The purpose of this work was to develop a dense and informative linkage map that would assist in the preliminary mapping and dissection of quantitative trait loci (QTL) in a variety of silkworm strains.ResultsThrough an analysis of > 50,000 genotypes across new mapping populations, we constructed two new linkage maps covering 27 assigned chromosomes and merged the data with previously reported data sets. The integrated consensus map contains 692 unique SSR sites, improving the density from 6.3 cM in the previous map to 4.8 cM. We also developed 497 confirmed neighboring markers for corresponding low-polymorphism sites, with 244 having polymorphisms. Large-scale statistics on the SSR type were suggestive of highly efficient markers, based upon which we searched 16,462 available genomic scaffolds for SSR loci. With the newly constructed map, we mapped single-gene traits, the QTL of filaments, and a number of ribosomal protein genes.ConclusionThe integrated map produced in this study is a highly efficient genetic tool for the high-throughput mapping of single genes and QTL. Compared to previous maps, the current map offers a greater number of markers and polymorphisms; thus, it may be used as a resource for marker-assisted breeding.
Archives of Insect Biochemistry and Physiology | 2008
Wenbin Liu; Fei Yang; Shihai Jia; Xuexia Miao; Yongping Huang
Pair-rule genes (genes that are expressed only in alternate segments, odd or even) play an important role in translating the broad gradients of upstream genes into dual segment periodicity for body plan patterning in Drosophila. However, homologues of pair-rule genes show a remarkable diversity of expression patterns and functions in other insects. We cloned the homologue of runt in the silkworm Bombyx mori, an intermediate germband-type insect. Whole-mount in situ hybridization revealed three stripes arose one by one before gastrulation at the blastoderm stage. Five additional stripes were then generated sequentially as the growth zone elongated. Eight stripes appeared in a pair-rule manner with two-segment periodicity, each of which was confined to the posterior of an odd-numbered parasegment. The weaker segmental secondary stripes emerged de novo in even-numbered parasegments. The Bmrunt transcript vanished before blastokinesis and was then expressed again in the whole embryo. RNA interference for Bmrunt caused severely truncated, almost completely asegmental defects. This cadual-like phenotype suggests that Bmrunt does not function as a pair-rule gene in silkworm segmentation. Bmrunt is required for formation of most body segments and axis elongation in B. mori.
Molecular Plant | 2014
Huimin Guo; Haichao Li; Shi-Rong Zhou; Hong-Wei Xue; Xuexia Miao
The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further analysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes under AOC overexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture.