Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueyi Xie is active.

Publication


Featured researches published by Xueyi Xie.


Nature Biotechnology | 2003

Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain

Xueding Wang; Yongjiang Pang; Geng Ku; Xueyi Xie; George Stoica; Lihong V. Wang

Imaging techniques based on optical contrast analysis can be used to visualize dynamic and functional properties of the nervous system via optical signals resulting from changes in blood volume, oxygen consumption and cellular swelling associated with brain physiology and pathology. Here we report in vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means of laser-induced photoacoustic tomography (PAT). The advantage of PAT over pure optical imaging is that it retains intrinsic optical contrast characteristics while taking advantage of the diffraction-limited high spatial resolution of ultrasound. We accurately mapped rat brain structures, with and without lesions, and functional cerebral hemodynamic changes in cortical blood vessels around the whisker-barrel cortex in response to whisker stimulation. We also imaged hyperoxia- and hypoxia-induced cerebral hemodynamic changes. This neuroimaging modality holds promise for applications in neurophysiology, neuropathology and neurotherapy.


Journal of Biomedical Optics | 2006

Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography

Xueding Wang; Xueyi Xie; Geng Ku; Lihong V. Wang; George Stoica

Simultaneous transcranial imaging of two functional parameters, the total concentration of hemoglobin and the hemoglobin oxygen saturation, in the rat brain in vivo is realized noninvasively using laser-based photoacoustic tomography (PAT). As in optical diffusion spectroscopy, PAT can assess the optical absorption of endogenous chromophores, e.g., oxygenated and deoxygenated hemoglobins, at multiple optical wavelengths. However, PAT can provide high spatial resolution because its resolution is diffraction-limited by photoacoustic signals rather than by optical diffusion. Laser pulses at two wavelengths are used sequentially to acquire photoacoustic images of the vasculature in the cerebral cortex of a rat brain through the intact skin and skull. The distributions of blood volume and blood oxygenation in the cerebral cortical venous vessels, altered by systemic physiological modulations including hyperoxia, normoxia, and hypoxia, are visualized successfully with satisfactory spatial resolution. This technique, with its prominent sensitivity to endogenous contrast, can potentially contribute to the understanding of the interrelationship between neural, hemodynamic, and metabolic activities in the brain.


Proceedings of the IEEE | 2008

Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography

Meng-Lin Li; Jung Taek Oh; Xueyi Xie; Geng Ku; Wei Wang; Chun Li; Gina Lungu; George Stoica; Lihong V. Wang

Noninvasive molecular and functional imaging in vivo is promising for detecting and monitoring various physiological conditions in animals and ultimately humans. To this end, we present a novel noninvasive technology, spectroscopic photoacoustic tomography (SPAT), which offers both strong optical absorption contrast and high ultrasonic spatial resolution. Optical contrast allows spectroscopic separation of signal contributions from multiple optical absorbers (e.g., oxyhemoglobin, deoxyhemoglobin, and a molecular contrast agent), thus enabling simultaneous molecular and functional imaging. SPAT successfully imaged with high resolution the distribution of a molecular contrast agent targeting integrin overexpressed in human U87 glioblastomas in nude mouse brains. Simultaneously, SPAT also imaged the hemoglobin oxygen saturation and the total hemoglobin concentration of the vasculature, which revealed hypoxia in tumor neovasculature. Therefore, SPAT can potentially lead to better understanding of the interrelationships between hemodynamics and specific biomarkers associated with tumor progression.


Applied Optics | 2005

Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography

Geng Ku; Xueding Wang; Xueyi Xie; George Stoica; Lihong V. Wang

Green laser pulses at a wavelength of 532 nm from a Q-switched Nd:YAG laser were employed as irradiation sources for photoacoustic tomography (PAT). The vascular structure of the brain was imaged clearly, with optimal contrast, because blood has strong absorption near this wavelength. The photoacoustic images of rat brain tumors in this study clearly reveal the angiogenesis that is associated with tumors. Brain tumors can be identified based on the distorted vascular architecture of brain tumorigenesis and related vascular changes, such as hemorrhage. This research demonstrates that PAT can potentially provide a powerful tool for small-animal biological research.


Biomedical optics | 2004

Noninvasive functional photoacoustic tomography of blood-oxygen saturation in the brain

Xueding Wang; Geng Ku; Xueyi Xie; Yiwen Wang; George Stoica; Lihong V. Wang

Since optical contrast is sensitive to functional parameters, including the hemoglobin oxygen saturation and the total concentration of hemoglobin, imaging based on optical contrast has been widely employed for the real-time monitoring of tissue oxygen consumption and hemodynamics in biological tissues. However, due to the overwhelming scattering of light in tissues, traditional optical imaging modalities cannot provide satisfactory spatial resolution. Functional photoacoustic tomography is a novel technique that combines high optical contrast and high ultrasonic resolution. Here, we present our study of a laser-based photoacoustic technique that, for the first time to our knowledge, monitors blood oxygenation in the rat brain in vivo. The cerebral blood oxygenation in the rat brain was imaged by photoacoustic detection at two wavelengths. The change in the hemoglobin oxygen saturation in the brain vessels as a result of the alternation from hyperoxia status to hypoxia status was visualized successfully with satisfactory spatial resolution. This work demonstrates that photoacoustic technique, based on the spectroscopic absorption of oxy- and deoxy-hemoglobin, can provide accurate functional imaging of cerebral blood oxygenation in the small-animal brain non-invasively with the skin and skull intact.


Brain Research | 2007

Inherited tertiary hypothyroidism in Sprague-Dawley rats.

George Stoica; Gina Lungu; Xueyi Xie; Louise C. Abbott; Heidi M. Stoica; John T. Jaques

Thyroid hormones (THs) are important in the development and maturation of the central nervous system (CNS). The significant actions of THs during CNS development occur at the time when TH levels are lower than those in the mother and the hypothalamic-thyroid (HPT) axis is not fully functional. In the developing rat nervous system, primarily the cerebellum, the first three postnatal weeks represent a period of significant sensitivity to thyroid hormones. This study presents a spontaneous, inherited recessive hypothyroidism in Sprague-Dawley rats with devastating functional consequences to the development of the CNS. The clinical signs develop around 14 days postnatal (dpn) and are characterized by ataxia, spasticity, weight loss and hypercholesterolemia. The afflicted rats died at 30 days due to severe neurological deficits. The deterioration affects the entire CNS and is characterized by progressive neuronal morphological and biochemical changes, demyelination and astrogliosis. The cerebellum, brain stem, neocortex, hippocampus and adrenal gland medulla appear to be most affected. Thyroid Stimulating Hormone (TSH), T3 and T4 levels were significantly lower in hypothyroid rats than control. Immunohistochemistry and RT-PCR demonstrated a reduction of Thyrotropin Releasing Hormone (TRH) in the hypothalamus of hypothyroid rats. The weight of both thyroid and pituitary glands were significantly less in hypothyroid rats than the corresponding normal littermate controls. Transmission electron microscopy demonstrates consistent postsynaptic dendritic, synaptic and spine alterative changes in the brain of hypothyroid rats. These data suggest that we discovered a tertiary form of inherited hypothyroidism involving the hypothalamus.


international conference of the ieee engineering in medicine and biology society | 2005

Combined Photoacoustic and Molecular Fluorescence Imaging In Vivo

Lihong V. Wang; Xueyi Xie; Jung Taek Oh; Meng N. Li; Geng Ku; Shi Ke; Sergiu Similache; Chun Li; George Stoica

Because of the overwhelming scattering of light in biological tissues, the spatial resolution and imaging depth of conventional fluorescent imaging is unsatisfactory. Therefore, we present a dual modality imaging technique by combining fluorescence imaging with high-resolution noninvasive photoacoustic tomography (PAT) for the study of an animal tumor model. PAT provides high-resolution structural images of tumor angiogenesis, and fluorescence imaging offers high sensitivity to molecular probes for tumor detection. Coregistration of the PAT and fluorescence images was performed on nude mice with M21 human melanoma cell lines with alphavbeta3 integrin expression. An integrin alphavbeta3-targeted peptide-ICG conjugated NIR fluorescent contrast agent was used as the molecular probe for tumor detection. PAT was employed to noninvasively image the brain structure and the angiogenesis associated with tumors in mice. The coregistration between the PAT and fluorescence images was used to visualize tumor location, angiogenesis, and brain structure simultaneously


Biomedical optics | 2006

Photoacoustic molecular imaging of small animals in vivo

Xueyi Xie; Meng-Lin Li; Jung Taek Oh; Geng Ku; Wei Wang; Chun Li; Sergiu Similache; Gina Lungu; George Stoica; Lihong V. Wang

Molecular imaging is a newly emerging field in which the modern tools of molecular and cell biology have been married to state-of-the-art technologies for noninvasive imaging. The study of molecular imaging will lead to better methods for understanding biological processes as well as diagnosing and managing disease. Here we present noninvasive in vivo spectroscopic photoacoustic tomography (PAT)-based molecular imaging of αvβ3 integrin in a nude mouse U87 brain tumor. PAT combines high optical absorption contrast and high ultrasonic resolution by employing short laser pulses to generate acoustic waves in biological tissues through thermoelastic expansion. Spectroscopic PAT-based molecular imaging offers the separation of the contributions from different absorbers based on the differences in optical absorption spectra among those absorbers. In our case, in the near infrared (NIR) range, oxy-heamoglobin (O2Hb), deoxy-heamoglobin (HHb) and the injected αvβ3-targeted peptide-ICG conjugated NIR fluorescent contrast agent are the three main absorbers. Therefore, with the excitation by multiple wavelength laser pulses, spectroscopic PAT-based molecular imaging not only provides the level of the contrast agent accumulation in the U87 glioblastoma tumor, which is related to the metabolism and angiogenesis of the tumor, but also offers the information on tumor angiogenesis and tumor hypoxia.


Biomedical optics | 2005

Deep penetrating photoacoustic tomography in biological tissues

Geng Ku; Xueding Wang; Xueyi Xie; George Stoica; Lihong V. Wang

Photoacoustic tomography (PAT) in a circular scanning configuration was developed to image the deeply embedded optical heterogeneity in biological tissues. Based on the intrinsic contrast between blood and chicken breast muscle, an embedded blood object that was 5 cm deep in the tissue was detected using pulsed laser light at a wavelength of 1064 nm. Compared with detectors for flat active surfaces, cylindrically focused ultrasonic transducers can reduce the interference generated from the off-plane photoacoustic sources and make the image in the scanning plane clearer. While the optical penetration was optimized with near-infrared laser pulses of 800 nm in wavelength, the optical contrast was enhanced by indocyanine green (ICG) whose absorption peak matched the laser wavelength. This optimized PAT was able to image fine objects embedded at a depth of up to 5.2-cm, which is 6.2 times the 1/e optical penetration depth, in chicken breast muscle, at a resolution of < ~750 microns with a sensitivity of <7 pmol of ICG in blood. The resolution was found to deteriorate slowly with increasing imaging depth.


asian and pacific rim symposium on biophotonics | 2004

High-resolution spectroscopic photoacoustic tomography for noninvasive functional imaging of small-animal brains in vivo

Lihong V. Wang; Xueding Wang; Geng Ku; Xueyi Xie; George Stoica

Based on the multiwavelength laser-based photoacoustic tomography, noninvasive imaging of cerebral blood oxygenation and blood volume in small-animal brains in vivo was realized. The high sensitivity of this technique is based on the spectroscopic differences between oxy- and deoxy-hemoglobins whereas its spatial resolution is diffraction-limited by the photoacoustic signals. The point-by-point distributions of hemoglobin oxygen saturation and total concentration of hemoglobin in the cerebral cortical venous vessels, altered by systemic physiological modulations including hyperoxia and hypoxia, were visualized successfully through the intact skin and skull. This technique can potentially accelerate the progress in neuroscience and provide important new insights into cerebrovascular physiology and brain function.

Collaboration


Dive into the Xueyi Xie's collaboration.

Top Co-Authors

Avatar

Lihong V. Wang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng-Lin Li

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chun Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge