Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueying Tao is active.

Publication


Featured researches published by Xueying Tao.


Journal of Dairy Science | 2014

Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315

Shengjie Li; Renhui Huang; Nagendra P. Shah; Xueying Tao; Yonghua Xiong; Hua Wei

The objective of this study was to investigate the antioxidant and antibacterial activities of exopolysaccharide (EPS) from Bifidobacterium bifidum WBIN03 (B-EPS) and Lactobacillus plantarum R315 (L-EPS). The 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging, hydroxyl radical-scavenging, and superoxide radical-scavenging abilities were measured to evaluate antioxidant activity. Inhibition of erythrocyte hemolysis and lipid peroxidation was also measured. Both B-EPS and L-EPS had strong scavenging ability against DPPH and superoxide radicals at high concentration. The inhibitory effect of B-EPS on erythrocyte hemolysis was stronger than that of L-EPS in a concentration range from 0.30 to 1.00 mg/mL, whereas the hydroxyl scavenging ability of L-EPS (39.15 ± 0.58%) was significantly higher than that of 0.15 mg/mL ascorbic acid (24.33 ± 1.17%) and B-EPS (17.89 ± 3.30%) at 0.10 mg/mL. The inhibition of lipid peroxidation of 0.50 mg/mL B-EPS and L-EPS was 13.48 ± 1.74% and 12.43 ± 0.51%, respectively, values lower than that of ascorbic acid at the same concentration (23.20 ± 1.41%). Furthermore, all these abilities were enhanced in a concentration-dependent manner. Agar diffusion assay showed that both EPS exhibited antibacterial activities against tested pathogens such as Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, Staphyloccocus aureus, Candida albicans, Bacillus cereus, Salmonella typhimurium, and Shigella sonnei at 300 μg/mL. In conclusion, both EPS have antimicrobial and antioxidant activities and could have applications in the food industry.


Journal of Dairy Science | 2015

In vitro probiotic characteristics of Lactobacillus plantarum ZDY 2013 and its modulatory effect on gut microbiota of mice

Renhui Huang; Xueying Tao; Cuixiang Wan; Shengjie Li; Hengyi Xu; Feng Xu; Nagendra P. Shah; Hua Wei

Lactobacillus plantarum ZDY 2013, a novel strain isolated from Chinese traditional fermented acid beans, was systematically evaluated for its survival capacity under stress conditions (pH, bile salt, simulated gastrointestinal tract, and antibiotics), production of exopolysaccharide and antagonism against 8 pathogens. Its effect on mice gut microbiota was also investigated by quantitative PCR and PCR-denaturing gradient gel electrophoresis. The results showed that ZDY 2013 can grow at pH 3.5 and survive at pH 2.0 for 6 h and at 0.45% bile salt for 3 h. The exopolysaccharide yield was up to 204±7.68 mg/L. The survival rate of ZDY 2013 in a simulated gastrointestinal tract was as high as 65.84%. Antagonism test with a supernatant of ZDY 2013 showed maximum halo of 28 mm against Listeria monocytogenes. The inhibition order was as follows: Listeria monocytogenes, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Shigella sonnei, Enterobacter sakazakii, and Staphylococcus aureus. Lactobacillus plantarum ZDY 2013 was sensitive to some antibiotics (e.g., macrolide, sulfonamides, aminoglycoside, tetracyclines and β-lactams), whereas it was resistant to glycopeptides, quinolones, and cephalosporins antibiotics. Denaturing gradient gel electrophoresis profile demonstrated that ZDY 2013 administration altered the composition of the microbiota at various intestinal loci of the mice. Moreover, the quantitative PCR test showed that the administration of ZDY 2013 enhanced the populations of Bifidobacterium and Lactobacillus in either the colon or cecum, and reduced the potential enteropathogenic bacteria (e.g., Enterococcus, Enterobacterium, and Clostridium perfringens). Lactobacillus plantarum ZDY 2013 exhibited high resistance against low pH, bile salt, and gastrointestinal fluid, and possessed antibacterial and gut microbiota modulation properties with a potential application in the development of dairy food and nutraceuticals.


Journal of Dairy Science | 2016

Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk

Meiling Jiang; Fen Zhang; Cuixiang Wan; Yonghua Xiong; Nagendra P. Shah; Hua Wei; Xueying Tao

Lactobacillus plantarum WLPL04, a specific strain isolated from human breast milk, was investigated for its survival capacity (acid and bile salt tolerance, survival in simulated gastrointestinal tract, inhibition of pathogens, antibiotic susceptibility, yield of exopolysaccharides) and probiotic properties (antiadhesion of pathogens, protection from harmful effect of sodium dodecyl sulfate, and antiinflammatory stress on Caco-2 cells). The results showed that Lb. plantarum WLPL04 had broad-spectrum activity against gram-positive strains (Listeria monocytogenes CMCC54007, Bacillus cereus ATCC14579, and Staphylococcus aureus CMCC26003) and gram-negative strains (Pseudomonas aeruginosa MCC10104, Shigella sonnei ATCC25931, Enterobacter sakazakii ATCC29544, Salmonella typhimurium ATCC13311, and Escherichia coli O157:H7). Antibiotic susceptibility tests showed that Lb. plantarum WLPL04 was susceptible to 8 of 14 antibiotics (e.g., erythromycin and nitrofurantoin) and resistant to 6 of 14 antibiotics (e.g., kanamycin and bacitracin). Lactobacillus plantarum WLPL04 was able to survive at pH 2.5 for 3h and at 0.45% bile salt for 12h, suggesting that it can survive well in the gastrointestinal tract. In addition, the exopolysaccharide yield of Lb. plantarum WLPL04 reached 426.73 ± 65.56 mg/L at 24h. With strategies of competition, inhibition, and displacement, Lb. plantarum WLPL04 reduced the adhesion of E. coli O157:H7 (35.51%), Sal. typhimurium ATCC 13311 (8.10%), and Staph. aureus CMCC 26003 (40.30%) on Caco-2 cells by competition, and subsequently by 59.80, 62.50, and 42.60%, respectively, for the 3 pathogens through inhibition, and by 75.23, 39.97, and 52.88%, respectively, through displacement. Lactobacillus plantarum WLPL04 attenuated the acute stress induced by sodium dodecyl sulfate on Caco-2 cells and significantly inhibited the expression of inflammatory cytokines (IL-6, IL-8 and tumor necrosis factor-α) on Caco-2 cells but increased IL-10 expression in vitro compared with the Salmonella-treated group. In summary, Lb. plantarum WLPL04 from breast milk could be considered as a probiotic candidate for dairy products to promote human health.


Journal of Dairy Science | 2016

Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens.

Zhihong Zhang; Xueying Tao; Nagendra P. Shah; Hua Wei

Lactobacillus plantarum ZDY2013 is a potential probiotic isolated from fermented bean acid. In this study, we aimed to evaluate the in vitro antimicrobial activity of this organism against Bacillus cereus in milk fermentation, the antiadhesion ability on intestinal epithelial cells, as well as its ability to abrogate the cytotoxic effect and expression levels of genes. We found no antimicrobial activity produced by L. plantarum once the pH was adjusted to 6.0 and 7.0. The pH decreased continuously when L. plantarum and B. cereus were co-incubated during milk fermentation, which caused a decrease in the B. cereus counts. Antiadhesion assays showed that L. plantarum can significantly inhibit the adhesion of enterotoxin-producing B. cereus ATCC14579 and pathogenic B. cereus HN001 by inhibition, competition, and displacement. The supernatants of B. cereus, either alone or in conjunction with L. plantarum, caused damage to the membrane integrity of Caco-2 cells to release lactate dehydrogenase. In addition, L. plantarum tended to attenuate proinflammatory cytokine and oxidative stress gene expression on Caco-2 cells, inducing with B. cereus HN001 supernatants. This study provided systematic insights into the antagonistic effect of L. plantarum ZDY2013, and the information may be helpful to explore potential control measures for preventing food poisoning by lactic acid bacteria.


Journal of Dairy Science | 2016

Changes in gastric microbiota induced by Helicobacter pylori infection and preventive effects of Lactobacillus plantarum ZDY 2013 against such infection.

Mingfang Pan; Cuixiang Wan; Qiong Xie; Renhui Huang; Xueying Tao; Nagendra P. Shah; Hua Wei

Helicobacter pylori is a gram-negative pathogen linked to gastric ulcers and stomach cancer. Gastric microbiota might play an essential role in the pathogenesis of these stomach diseases. In this study, we investigated the preventive effect of a probiotic candidate Lactobacillus plantarum ZDY 2013 as a protective agent against the gastric mucosal inflammation and alteration of gastric microbiota induced by H. pylori infection in a mouse model. Prior to infection, mice were pretreated with or without 400 µL of L. plantarum ZDY 2013 at a concentration of 10(9) cfu/mL per mouse. At 6 wk postinfection, gastric mucosal immune response and alteration in gastric microbiota mice were examined by quantitative real-time PCR and high-throughput 16S rRNA gene amplicon sequencing, respectively. The results showed that L. plantarum ZDY 2013 pretreatment prevented increase in inflammatory cytokines (e.g., IL-1β and IFN-γ) and inflammatory cell infiltration in gastric lamina propria induced by H. pylori infection. Weighted UniFrac principal coordinate analysis showed that L. plantarum ZDY 2013 pretreatment prevented the alteration in gastric microbiota post-H. pylori infection. Linear discriminant analysis coupled with effect size identified 22 bacterial taxa (e.g., Pasteurellaceae, Erysipelotrichaceae, Halomonadaceae, Helicobacteraceae, and Spirochaetaceae) that overgrew in the gastric microbiota of H. pylori-infected mice, and most of them belonged to the Proteobacteria phylum. Lactobacillus plantarum ZDY 2013 pretreatment prevented this alteration; only 6 taxa (e.g., Lachnospiraceae, Ruminococcaceae, and Clostridiaceae), mainly from the taxa of Firmicutes and Bacteroidetes, were dominant in the gastric microbiota of the L. plantarum ZDY 2013 pretreated mice. Administration of L. plantarum ZDY 2013 for 3 wk led to increase in several bacterial taxa (e.g., Rikenella, Staphylococcus, Bifidobacterium), although a nonsignificant alteration was found in the gastric microbiota. Overall, this study demonstrated that L. plantarum ZDY 2013 pretreatment played an important role in preventing gastric mucosal inflammation and gastric microbiota alteration induced by H. pylori infection, and the selective modulation in gastric microbiota posed by this intervention suggested that targeting gastric microbiota through oral administration of probiotics might be an alternative strategy to prevent H. pylori infection.


Journal of Dairy Science | 2017

Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04

Zhengqi Liu; Zhihong Zhang; Liang Qiu; Fen Zhang; Xiongpeng Xu; Hua Wei; Xueying Tao

Exopolysaccharide (EPS) was extracted and purified from Lactobacillus plantarum WLPL04, which has been confirmed previously as a potential probiotic for its antagonistic and immune-modulating activity. It has a molecular weight of 6.61 × 104 Da, consisting of xylose, glucose, and galactose in an approximate molar ratio of 3.4:1.8:1. Microstructural studies demonstrated that the EPS appeared as a smooth sheet structure with many homogeneous rod-shaped lumps. The preliminary in vitro assays indicated that the EPS could significantly inhibit the adhesion of Escherichia coli O157:H7 to HT-29 cells in competition, replacement, and inhibition assays at a dose of 1.0 mg/mL, with an inhibition rate of 20.24 ± 2.23, 29.71 ± 1.21, and 30.57 ± 1.73%, respectively. Additionally, the EPS exhibited strong inhibition against biofilm formation by pathogenic bacteria, including Pseudomonas aeruginosa CMCC10104, E. coli O157:H7, Salmonella Typhimurium ATCC13311, and Staphylococcus aureus CMCC26003. Furthermore, the EPS showed good inhibitory activity against the proliferation of HT-29 cells. The characteristics and bioactivities of this EPS may make it a promising candidate in developing functional food.


Journal of Dairy Science | 2016

Short communication: Modulation of the small intestinal microbial community composition over short-term or long-term administration with Lactobacillus plantarum ZDY2013

Qiong Xie; Mingfang Pan; Renhui Huang; Ximei Tian; Xueying Tao; Nagendra P. Shah; Hua Wei; Cuixiang Wan

The small intestinal (SI) microbiota has an essential role in the maintenance of human health. However, data about the indigenous bacteria in SI as affected by probiotics are limited. In our study, the short-term and long-term effects of a probiotic candidate, Lactobacillus plantarum ZDY2013, on the SI microbiota of C57BL/6J mice were investigated by the Illumina HiSeq (Novogene Bioinformatics Technology Co., Ltd., Tianjin, China) platform targeting the V4 region of the 16S rDNA. A total of 858,011 sequences in 15 samples were read. The α diversity analysis revealed that oral administration with L. plantarum ZDY2013 for 3 wk led to a significant increase in the richness and diversity of the SI bacterial community. Principal coordinate analysis and unweighted pair-group method with arithmetic means analysis showed a clear alteration in the SI microbiota composition after 3 wk of L. plantarum ZDY2013 treatment, although these changes were not found 6 wk after ceasing L. plantarum ZDY2013 administration. Species annotation showed that the dominant phyla in SI microbiota were Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia. Interestingly, operational taxonomic unit cluster analysis showed that administration with L. plantarum ZDY2013 for 3 wk significantly increased the abundance of Proteobacteria, but decreased that of Bacteroidetes. Linear discriminant analysis coupled with effect size identified 18 bacterial taxa (e.g., Ruminococcus spp. and Clostridium spp.) that overgrew in the SI microbiota of the mice administered with L. plantarum ZDY2013 for 3 wk, and most of them belonged to the phyla Bacteroidetes and Proteobacteria. However, only one bacterial taxon (e.g., Nocardioides spp.) was over-represented in the SI microbiota of mice 6 wk after L. plantarum ZDY2013 administration. Overall, this study shows that oral administration with probiotic results in an important but transient alteration in the microbiota of SI.


Journal of Dairy Science | 2016

Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress

Renhui Huang; Mingfang Pan; Cuixiang Wan; Nagendra P. Shah; Xueying Tao; Hua Wei

Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide.


Journal of Dairy Science | 2016

Screening probiotic strains for safety: Evaluation of virulence and antimicrobial susceptibility of enterococci from healthy Chinese infants

Fen Zhang; Meiling Jiang; Cuixiang Wan; Xiaoyan Chen; Xiaoyong Chen; Xueying Tao; Nagendra P. Shah; Hua Wei

The aim of this study was to evaluate the safety of enterococci isolated from Chinese infants and screen out potential probiotic candidates. One hundred eight strains were isolated from feces of 34 healthy infants, and 38 strains of Enterococcus spp. were categorized as follows: E. faecalis (22), E. faecium (10), E. hirae (3), E. durans (2), and E. casseliflavus (1). Of these, 72.7% of E. faecalis came from infants delivered by cesarean and 62.5% of E. faecium from infants delivered vaginally. For safety evaluation of strains, we determined presence of virulence genes; production of hemolysin, gelatinase, and biofilm; and antimicrobial susceptibility of enterococci. Six out of 14 virulence genes were detected with a distribution of gelE (26.3%), cylA (39.4%), esp (15.8%), efaA (63.2%), asa1 (50.0%), and ace (50.0%). In phenotype analysis, 36.8% of the strains exhibited positive hemolytic activity and 17.5% were positive for production of gelatinase. Results of antimicrobial susceptibility showed that different percentages of the strains were resistant to ciprofloxacin (5.2%), vancomycin (7.8%), rifampicin (10.5%), erythromycin (52.6%), and gentamycin (52.6%); remarkably, none of the strains were resistant to ampicillin or chloramphenicol. In total, 10 strains, including 6 E. faecium, which are free of virulence determinants and sensitive to common antimicrobial agents (e.g., ampicillin and vancomycin), were further assessed for their probiotic properties. All strains survived well in simulated gastric fluid and intestinal tract, with maximum reductions of 0.600 and 0.887 log cfu/mL, respectively. Six strains of E. faecium could resist 0.3 to 1.0% bile salt, of which E. faecium WEFA23 presented the highest growth (75.06%) at 1.0% bile salt. All strains showed bile salt hydrolase activity on glycodeoxycholic acid, but only 3 of E. faecium showed activity on taurodeoxycholic acid. These results deliver useful information on the safety of enterococci in infants in China, and provide a protocol to screen probiotics for absence of virulence and antimicrobial susceptibility of enterococci.


Journal of Dairy Science | 2017

Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats

Fen Zhang; Liang Qiu; Xiongpeng Xu; Zhengqi Liu; Hui Zhan; Xueying Tao; Nagendra P. Shah; Hua Wei

The aim of this study was to select probiotic Enterococcus strains that have the potential to improve metabolic syndrome (MS). Ten Enterococcus strains isolated from healthy infants were evaluated for their probiotic properties in vitro, and Enterococcus faecium WEFA23 was selected due to its cholesterol removal ability (1.89 ± 0.07 mg/1010 cfu), highest glycodeoxycholic acid-hydrolase activity (1.86 ± 0.01 U/mg), and strong adhesion capacity to Caco-2 cells (17.90 ± 0.19%). The safety of E. faecium WEFA23 was verified by acute oral administration in mice, and it was found to have no adverse effects on general health status, bacterial translocation, and gut mucosal histology. Moreover, the beneficial effects of E. faecium WEFA23 on high-fat diet-induced MS in rats were investigated, and we found WEFA23 significantly decreased body weight, serum lipid levels (total cholesterol, triacylglycerols, and low-density lipoprotein cholesterol), blood glucose level, and insulin resistance in rats fed with a high-fat diet. This indicated that administration of E. faecium WEFA23 improved almost all key markers of MS, including obesity, hyperlipidemia, hyperglycemia, and insulin resistance. Our results supported E. faecium WEFA23 as a candidate for cholesterol-lowering dairy products and improvement of MS. Our research provided novel insights on Enterococcus as a strategy to combat MS.

Collaboration


Dive into the Xueying Tao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Qiu

Jiangxi University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge