Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueyuan Bai is active.

Publication


Featured researches published by Xueyuan Bai.


Age | 2012

Age-related changes in the function of autophagy in rat kidneys

Jing Cui; Xueyuan Bai; Suozhu Shi; Shaoyuan Cui; Quan Hong; Guangyan Cai; Xiangmei Chen

Autophagy is a highly regulated intracellular process for the degradation of cytoplasmic components, especially protein aggregates and damaged organelles. It is essential for maintaining healthy cells. Impaired or deficient autophagy is believed to cause or contribute to aging and age-related disease. In this study, we investigated the effects of age on autophagy in the kidneys of 3-, 12-, and 24-month-old Fischer 344 rats. The results revealed that autophagy-related gene (Atg)7 was significantly downregulated in kidneys of increasing age. The protein expression level of the autophagy marker light chain 3/Atg8 exhibited a marked decline in aged kidneys. The levels of p62/SQSTM1 and polyubiquitin aggregates, representing the function of autophagy and proteasomal degradation, increased in older kidneys. The level of 8-hydroxydeoxyguanosine, a marker of mitochondrial DNA oxidative damage, was also increased in older kidneys. Analysis by transmission electron microscope demonstrated swelling and disintegration of cristae in the mitochondria of aged kidneys. These results suggest that autophagic function decreases with age in the kidneys of Fischer 344 rats, and autophagy may mediate the process of kidney aging, leading to the accumulation of damaged mitochondria.


Mechanisms of Ageing and Development | 2013

Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage.

Yi-Chun Ning; Guangyan Cai; Li Zhuo; Jian-Jun Gao; Dan Dong; Shaoyuan Cui; Zhe Feng; Suozhu Shi; Xueyuan Bai; Xuefeng Sun; Xiangmei Chen

To explore the effect of short-term calorie restriction (CR) on renal aging, 8-week CR with 60% of the food intake of the ad libitum group was administered in 25-month-old male Sprague-Dawley rats. Aged rats subjected to short-term CR had lower body weight, level of triglycerides and ratio of urine protein to urine creatinine, respectively. Short-term CR blunted the increased glomerular volume, the degree of fibrosis, p16 and the positive rate of senescence-associated β-galactosidase staining of the kidneys in old ad libitum group. Light chain 3/Atg8 as an autophagy marker exhibited a marked decline in aged kidneys, which was increased by short-term CR. The levels of p62/SQSTM1 and polyubiquitin aggregates, which were increased in older kidneys, were blunted by short-term CR. Short-term CR retarded the level of 8-hydroxydeoxyguanosine, a marker of mitochondrial DNA oxidative damage. Moreover, we found an increased level of SIRT1 and AMPK, and a decreased level of mTOR in aged kidneys after short-term CR. These results suggested that short-term CR could be considered as a potential intervention for retardation of renal senescence by increasing autophagy and subsequently reducing oxidative damage. Three master regulators of energy metabolism, SIRT1, AMPK and mTOR are associated with these effects.


Cellular Physiology and Biochemistry | 2011

NAD Blocks High Glucose Induced Mesangial Hypertrophy via Activation of the Sirtuins-AMPK- mTOR Pathway

Li Zhuo; Bo Fu; Xueyuan Bai; Bin Zhang; Lingling Wu; Jing Cui; Shaoyuan Cui; Ri-bao Wei; Xiangmei Chen; Guangyan Cai

Background/aims-Since the discovery of NAD-dependent deacetylases, Sirtuins, it has been recognized that maintaining intracellular levels of NAD is crucial for the management of stress-response of cells. Here we show that high glucose(HG)-induced mesangial hypertrophy is associated with loss of intracellular levels of NAD. This study was designed to investigate the effect of NAD on HG-induced mesangial hypertrophy. Methods-The rat glomerular mesangial cells (MCs) were incubated in HG medium with or without NAD. Afterwards, NAD+/NADH ratio and enzyme activity of Sirtuins was determined. In addition, the expression analyses of AMPK-mTOR signaling were evaluated by Western blot analysis. Results-We showed that HG induced the NAD+/NADH ratio and the levels of SIRT1 and SIRT3 activity decreased as well as mesangial hypertrophy, but NAD was capable of maintaining intracellular NAD+/NADH ratio and levels of SIRT1 and SIRT3 activity as well as of blocking the HG-induced mesangial hypertrophy in vitro. Activating Sirtuins by NAD blocked the activation of pro-hypertrophic Akt signaling, and augmented the activity of the antihypertrophic AMPK signaling in MCs, which prevented the subsequent induction of mTOR-mediated protein synthesis. By AMPK knockdown, we showed it upregulated phosphorylation of mTOR. In such, the NAD inhibited HG-induced mesangial hypertrophy whereas NAD lost its inhibitory effect in the presence of AMPK siRNA. Conclusion-These results reveal a novel role of NAD as an inhibitor of mesangial hypertrophic signaling, and suggest that prevention of NAD depletion may be critical in the treatment of mesangial hypertrophy.


PLOS ONE | 2013

Mitochondrial Autophagy Involving Renal Injury and Aging Is Modulated by Caloric Intake in Aged Rat Kidneys

Jing Cui; Suozhu Shi; Xuefeng Sun; Guangyan Cai; Shaoyuan Cui; Quan Hong; Xiangmei Chen; Xueyuan Bai

Abstract Background A high-calorie (HC) diet induces renal injury and promotes aging, and calorie restriction (CR) may ameliorate these responses. However, the effects of long-term HC and CR on renal damage and aging have been not fully determined. Autophagy plays a crucial role in removing protein aggregates and damaged organelles to maintain intracellular homeostasis and function. The role of autophagy in HC-induced renal damage is unknown. Methods We evaluated the expression of LC3/Atg8 as a marker of the autophagosome; p62/SQSTM1; polyubiquitin aggregates as markers of autophagy flux; Ambra1, PINK1, Parkin and Bnip3 as markers of mitophagy; 8-hydroxydeoxyguanosine (8-OHdG) as a marker of DNA oxidative damage; and p16 as a marker of organ aging by western blot and immunohistochemical staining in the kidneys of 24-month-old Fischer 344 rats. We also observed mitochondrial structure and autolysosomes by transmission electron microscopy. Results Expression of the autophagosome formation marker LC3/Atg8 and markers of mitochondrial autophagy (mitophagy) were markedly decreased in the kidneys of the HC group, and markedly increased in CR kidneys. p62/SQSTM1 and polyubiquitin aggregates increased in HC kidneys, and decreased in CR kidneys. Transmission electron microscopy demonstrated that HC kidneys showed severe abnormal mitochondrial morphology with fewer autolysosomes, while CR kidneys exhibited normal mitochondrial morphology with numerous autolysosomes. The level of 8-hydroxydeoxyguanosine was increased in HC kidneys and decreased in CR kidneys. Markers of aging, such as p16 and senescence-associated-galactosidase, were increased significantly in the HC group and decreased significantly in the CR group. Conclusion The study firstly suggests that HC diet inhibits renal autophagy and aggravates renal oxidative damage and aging, while CR enhances renal autophagy and ameliorates oxidative damage and aging in the kidneys.


Mechanisms of Ageing and Development | 2012

SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence.

Sifang Zhang; Guangyan Cai; Bo Fu; Zhe Feng; Rui Ding; Xueyuan Bai; Weiping Liu; Li Zhuo; Lin Sun; Fuyou Liu; Xiangmei Chen

The mTOR deregulation has a role in chronic kidney disease including diabetic nephropathy. SIRT1 is an important participant in renal cytoprotective responses to aging and stress. However, whether both mTOR and SIRT1 are involved in high glucose-inducing mesangial cells (MCs) senescence still remains to be explored. Hence we investigate the potential functional interrelationship between these two proteins in high glucose-inducing MCs senescence. High glucose increased mTOR expression and activity, but decreased SIRT1 expression and activity. The level of mTOR was increased significantly, while the SIRT1 expression and activity was declined significantly with serial cell culture passage. The siRNA-SIRT1 and nicotinamide promoted MCs senescence. NAD or resveratrol arrested high glucose-inducing MCs senescence. Meanwhile, the effects of NAD or resveratrol on high glucose-inducing MCs senescence were also completely blocked by SiRNA-SIRT1. Rapamycin arrested MCs senescence induced by high glucose and prevented MCs senescence with serial cell culture passage, and meanwhile increased the SIRT1 expression and activity. Moreover, the effects of rapamycin on MCs senescence induced by high glucose were also completely blocked by treating cells with niacinamide or siRNA-SIRT1. These findings provide support for the hypothesis that SIRT1 is required for the effects of rapamycin on high glucose-inducing MCs senescence.


Journal of Cellular Physiology | 2006

Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3

Xueyuan Bai; Xiangmei Chen; Zhe Feng; Kai Hou; Ping Zhang; Bo Fu; Suozhu Shi

Sodium‐dependent dicarboxylate transporters (NaDC) include low‐affinity NaDC1 and high‐affinity NaDC3. Despite high similarities structurally and functionally, both are localized to opposite surfaces of renal tubular cells. The molecular mechanisms and localization signals leading to this polarized distribution remain unknown. In this study, distribution of NaDC3 in human kidney tissue was firstly observed by immunohistochemistry and immunofluorescence. Then, EGFP‐fused wild‐type, NH2‐ and COOH‐terminal deletion and point mutants of NaDC3, and chimera between NaDC3 and NaDC1, were generated and transfected into polarized renal cells lines, LLC‐PK1 and MDCK. Their subcellular localizations were analyzed by laser confocal microscopy. Immunolocalization results revealed that NaDC3 was expressed at basolateral membrane of human renal proximal tubular epithelia. Confocal examinations showed that wild‐type NaDC3 was targeted to the basolateral membrane of MDCK and LLC‐PK1. Deletion mutations indicated that the basolateral targeting signal of NaDC3 located within a short sequence AKKVWSARR of its amino‐terminal cytoplasmic domain. Addition of this sequence could redirect apical NaDC1 to the basolateral membrane of LLC‐PK1. Point mutagenesis revealed that mutation of either of two hydrophobic amino acids V and W in this short sequence largely redirected NaDC3 to both apical and basolateral surfaces of LLC‐PK, indicating that the two hydrophobic amino acids are critical for the basolateral targeting of NaDC3. Our studies provide direct evidence of the localization of NaDC3 at the basolateral membrane of human renal proximal tubule cells and identify a di‐hydrophobic amino acid motif VW as basolateral localization signal in the N‐terminal cytoplasmic domain of NaDC3. J.Cell.Physiol.


Molecular & Cellular Proteomics | 2012

Bioinformatics Analysis of Proteomic Profiles During the Process of Anti-Thy1 Nephritis

Yang Lu; Xiaoluan Liu; Suozhu Shi; Huabin Su; Xueyuan Bai; Guangyan Cai; Fuquan Yang; Zhensheng Xie; Yunping Zhu; Yanqiong Zhang; Shujia Zhang; Xiaofan Li; Shan Wang; Di Wu; Li Zhang; Jie Wu; Yuansheng Xie; Xiangmei Chen

Anti-Thy1 nephritis is a well-established experimental mesangial proliferative nephritis model. Exploring the molecular mechanisms of pathophysiology in anti-Thy1 nephritis may elucidate the pathogeneses of mesangial proliferation. We examined the roles and acting mechanisms of differentially expressed proteins (DEPs) by bioinformatics analysis of glomeruli proteomic profiles during the course of anti-Thy1 nephritis. In total, 108 DEPs were found by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), and 40 DEPs were identified by matrix-assisted laser desorption ionization/time of flight and liquid chromatography-MS. DEPs were classified into five clusters (Clusters 1–5), according to their expression trends using Cluster 3.0 software, involved in regulating biological processes such as the stress response, cell proliferation, apoptosis, energy metabolism, transport, and the actin cytoskeleton. The expression patterns of ten DEPs, distributed across five clusters, including AKR1A1, AGAT, ATP6V1B2, HIBADH, MDH1, MPST, NIT2, PRDX6, PSMB7, and TPI1, were validated by Western blotting. Based on Western blotting and immunohistochemistry, we also found that the DEP FHL2, which was primarily expressed in the mesangial region, was down-regulated on days 3 and 5, and up-regulated on day 10. In vitro, we found that FHL2 overexpression induced mesangial cell proliferation by increasing the number of S-phase cells and decreasing G2/M-phase cells, whereas inhibiting FHL2 had the opposite effect. This study explored novel DEPs and their expression patterns during anti-Thy1 nephritis, and elucidated FHL2s effect on mesangial cell proliferation. These results will contribute to our understanding of the pathogenesis of mesangial proliferation.


The FASEB Journal | 2007

Membrane topology structure of human high-affinity, sodium-dependent dicarboxylate transporter

Xueyuan Bai; Xiangmei Chen; An-Qiang Sun; Zhe Feng; Kai Hou; Bo Fu

High‐affinity, sodium‐dependent dicarboxylate transporter (NaDC3) is responsible for transport of Krebs cycle intermediates and may involve in regulation of aging and life span. Hydropathy analysis predicts that NaDC3 contains 11 or 12 hydrophobic transmembrane (TM) domains. However, the actual membrane topological structure of NaDC3 remains unknown. In this study, confocal immunofluorescence microscopy and membrane biotinylation of epitope‐tagged N and C termini of NaDC3 provide evidence of an extracellular C terminus and an intracellular N terminus, indicating an odd number of transmembrane regions. The position of hydrophilic loops within NaDC3 was identified with antibodies against the loops domains combined with cysteine accessibility methods. A confocal image of membrane localization and transport activity assay of the cysteine insertion mutants show behavior similar to that of wild‐type NaDC3 in transfected HEK293 cells, suggesting that these mutants retain a native protein configuration. We find that NaDC3 contains 11 transmembrane helices. The loops 1, 3, 5, 7, and 9 face the extracellular side, and loops 2, 4, 6, and 10 face the cytoplasmic side. A re‐entrant loop‐like structure between TM8 and TM9 may protrude into the membrane. Our results support the topography of 11 transmembrane domains with an extracellular C terminus and an intracellular N terminus of NaDC3, and for the first time provide experimental evidence for a novel topological model for NaDC3—Bai, X.‐Y., Chen, X., Sun, A.‐Q., Feng, Z., Hou, K., Fu, B. Membrane topology structure of human high‐affinity, sodium‐dependent dicarboxylate transporter. FASEB J. 21, 2409–2417 (2007)


Scientific Reports | 2015

Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models.

Jing Cui; Xueyuan Bai; Xuefeng Sun; Guangyan Cai; Quan Hong; Rui Ding; Xiangmei Chen

Gentamicin may cause acute kidney injury. The pathogenesis of gentamicin nephrotoxicity is unclear. Autophagy is a highly conserved physiological process involved in removing damaged or aged biological macromolecules and organelles from the cytoplasm. The role of autophagy in the pathogenesis of gentamicin nephrotoxicity is unclear. The miniature pigs are more similar to humans than are those of rodents, and thus they are more suitable as human disease models. Here we established the first gentamicin nephrotoxicity model in miniature pigs, investigated the role of autophagy in gentamicin-induced acute kidney injury, and determined the prevention potential of rapamycin against gentamicin-induced oxidative stress and renal dysfunction. At 0, 1, 3, 5, 7 and 10 days after gentamicin administration, changes in autophagy, oxidative damage, apoptosis and inflammation were assessed in the model group. Compared to the 0-day group, gentamicin administration caused marked nephrotoxicity in the 10-day group. In the kidneys of the 10-day group, the level of autophagy decreased, and oxidative damage and apoptosis were aggravated. After rapamycin intervention, autophagy activity was activated, renal damage in proximal tubules was markedly alleviated, and interstitium infiltration of inflammatory cells was decreased. These results suggest that rapamycin may ameliorate gentamicin-induced nephrotoxicity by enhancing autophagy.


Cellular and Molecular Life Sciences | 2014

miR-34a regulates mesangial cell proliferation via the PDGFR-β/Ras-MAPK signaling pathway.

Dapeng Chen; Ying Li; Yan Mei; Wenjia Geng; Jurong Yang; Quan Hong; Zhe Feng; Guangyan Cai; Hanyu Zhu; Suozhu Shi; Xueyuan Bai; Xiangmei Chen

The main pathological characteristic of glomerulonephritis is diffuse mesangial cell proliferation. MiR-34a is associated with the proliferation of various organs and cancer cells. However, the role of miR-34a in renal proliferation diseases is not clear. Therefore, this study aimed to elucidate the mechanism of miR-34a in the regulation of renal mesangial cell proliferation. The miR-34a expression level at different time points in an anti-Thy1 mesangial proliferative nephritis rat model was determined by qRT-PCR. The cell proliferation rate and cell cycle changes were measured in the in vitro cultured rat mesangial cells (RMCs). Our results suggested that miR-34a expression was negatively correlated with the degree of cell proliferation in the anti-Thy1 nephritis model. MiR-34a could extend the G0/G1 phase and block cell proliferation in RMCs. Dual-luciferase assay results showed that there were binding sites of miR-34a at 3′-UTR of platelet-derived growth factor receptor-β (PDGFR-β). MiR-34a can inhibit PDGFR-β protein expression at a post-transcriptional level, suppress Ras/MAPK signaling pathways, and down-regulate expression of cell cycle proteins at the G0/G1 phase, such as cyclin D1, CDK4/CDK6. In addition, miR-34a may also inhibit RMC proliferation by directly targeting cyclin E and CDK2. MiR-34a inhibits exogenous stimuli-induced proliferation of mesangial cells. Expression levels of phospho-PDGFR-β and phospho-MEK1 (an important downstream molecule in PDGFR-β-induced signaling pathway) were significantly increased in the anti-Thy-1 nephritis rat model. These results suggest that miR-34a may regulate RMC proliferation by directly inhibiting expressions of PDGFR-β, MEK1, and cell cycle proteins, cyclin E and CDK2.

Collaboration


Dive into the Xueyuan Bai's collaboration.

Top Co-Authors

Avatar

Xiangmei Chen

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Guangyan Cai

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Bo Fu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xuefeng Sun

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Quan Hong

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Suozhu Shi

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhe Feng

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Jing Cui

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Shaoyuan Cui

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Li Zhang

Chinese PLA General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge