Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ezhu Xu is active.

Publication


Featured researches published by ezhu Xu.


ACS Applied Materials & Interfaces | 2012

Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes.

Xuezhu Xu; Long Jiang; Zhengping Zhou; Xiang-Fa Wu; Yechun Wang

Soy protein isolate (SPI) and polyethylene oxide (PEO) were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and nonwoven nanofiber membranes were prepared from the solution by electrospinning. PEO functioned as a cospinning polymer in the process to improve the spinnability of SPI. The ratio of SPI to PEO was varied and the rest spinning conditions remained unchanged. The morphology of the nanofiber membranes, SPI and PEO distribution and phase structure in the fiber, crystallization and interaction between SPI and PEO, thermal properties and wettability of the membranes were studied. The results showed that the diameter of most of the nanofibers was in the range of 200-300 nm. SPI and PEO showed high compatibility in the fiber and SPI was homogeneously dispersed at nanoscale. Crystallization of SPI and PEO in the fiber was significantly different from that of their pure forms. All the nanofiber membranes showed superhydrophilicity. These nanofiber membranes can find importance in filtration and biomedical applications.


Journal of Materials Chemistry C | 2014

The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses

Jian Zhou; Dalaver H. Anjum; Long Chen; Xuezhu Xu; Isaac Aguilar Ventura; Long Jiang; Gilles Lubineau

Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) is a widely used conductive polymer in the field of flexible electronics. The ways its microstructure changes over a broad range of temperatures remain unclear. This paper describes microstructure changes at different temperatures and correlates the microstructure with its physical properties (mechanical and electrical). We used High-Angle Annular Dark-Field Scanning Electron Microscopy (HAADF-STEM) combined with electron energy loss spectroscopy (EELS) to determine the morphology and elemental atomic ratio of the film at different temperatures. These results together with the Atomic Force Microscopy (AFM) analysis provide the foundation for a model of how the temperature affects the microstructure of PEDOT/PSS. Moreover, dynamic mechanical analysis (DMA) and electrical characterization were performed to analyze the microstructure and physical property correlations.


ACS Applied Materials & Interfaces | 2017

Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

Jian Zhou; Hu Yu; Xuezhu Xu; Fei Han; Gilles Lubineau

The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly(dimethylsiloxane) (PDMS) can sustain their sensitivity even at very high strain levels (with a gauge factor of over 107 at 50% strain). This record sensitivity is ascribed to the low initial electrical resistance (5-28 Ω) of the SWCNT paper and the wide change in resistance (up to 106 Ω) governed by the percolated network of SWCNT in the cracked region. The sensor response remains nearly unchanged after 10 000 strain cycles at 20% proving the robustness of this technology. This fragmentation based sensing system brings opportunities to engineer highly sensitive stretchable sensors.


Journal of Materials Chemistry C | 2015

Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers

Jian Zhou; Er Qiang Li; Ruipeng Li; Xuezhu Xu; Isaac Aguilar Ventura; Ali Moussawi; Dalaver H. Anjum; Mohamed N. Hedhili; Detlef-M. Smilgies; Gilles Lubineau; Sigurdur T. Thoroddsen

A dramatic improvement in electrical conductivity is necessary to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators. In this study, high-performance poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet-spinning followed by hot-drawing. Due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), we achieved a record electrical conductivity of 2804 S cm−1. This is, to the best of our knowledge, a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S cm−1) and a two-fold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S cm−1). Moreover, we found that these highly conductive fibers experience a semiconductor–metal transition at 313 K. They also have superior mechanical properties with a Youngs modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers described here could make them available for conductive smart electronics.


Journal of Materials Chemistry C | 2016

High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators

Jian Zhou; Matthieu Mulle; Yaobin Zhang; Xuezhu Xu; Er Qiang Li; Fei Han; Sigurdur T. Thoroddsen; Gilles Lubineau

Conductive fibers with enhanced physical properties and functionalities are needed for a diversity of electronic devices. Here, we report very high performance in the thermal and mechanical response of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) microfibers when subjected to an electrical current. These fibers were made by combining the hot-drawing assisted wetspinning process with ethylene glycol doping/de-doping that can work at a current density as high as 1.8 × 104 A cm−2, which is comparable to that of carbon nanotube fibers. Their electrothermal response was investigated using optical sensors and verified to be as fast as 63 °C s−1 and is comparable with that of metallic heating elements (20–50 °C s−1). We investigated the electromechanical actuation resulted from the reversible sorption/desorption of moisture controlled by electro-induced heating. The results revealed an improvement of several orders of magnitudes compared to other linear conductive polymer-based actuators in air. Specifically, the fibers we designed here have a rapid stress generation rate (>40 MPa s−1) and a wide operating frequency range (up to 40 Hz). These fibers have several characteristics including fast response, low-driven voltage, good repeatability, long cycle life and high energy efficiency, favoring their use as heating elements on wearable textiles and as artificial muscles for robotics.


Scientific Reports | 2017

Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors

Xuezhu Xu; Jian Zhou; Yangyang Xin; Gilles Lubineau; Qian Ma; Long Jiang

Chemical sensors detect a variety of chemicals across numerous fields, such as automobile, aerospace, safety, indoor air quality, environmental control, food, industrial production and medicine. We successfully assemble an alcohol-sensing device comprising a thin-film sensor made of graphene nanosheets (GNs) and bacterial cellulose nanofibers (BCNs). We show that the GN/BCN sensor has a high selectivity to ethanol by distinguishing liquid–phase or vapor–phase ethanol (C2H6O) from water (H2O) intelligently with accurate transformation into electrical signals in devices. The BCN component of the film amplifies the ethanol sensitivity of the film, whereby the GN/BCN sensor has 12400% sensitivity for vapor-phase ethanol compared to the pure GN sensor, which has only 21% sensitivity. Finally, GN/BCN sensors demonstrate fast response/recovery times and a wide range of alcohol detection (10–100%). The superior sensing ability of GN/BCN compared to GNs alone is due to the improved wettability of BCNs and the ionization of liquids. We prove a facile, green, low-cost route for the assembly of ethanol-sensing devices with potential for vast application.


Langmuir | 2017

Sodium Hypochlorite and Sodium Bromide Individualized and Stabilized Carbon Nanotubes in Water

Xuezhu Xu; Jian Zhou; Veronica Colombo; Yangyang Xin; Ran Tao; Gilles Lubineau

Aggregation is a major problem for hydrophobic carbon nanomaterials such as carbon nanotubes (CNTs) in water because it reduces the effective particle concentration, prevents particles from entering the medium, and leads to unstable electronic device performances when a colloidal solution is used. Molecular ligands such as surfactants can help the particles to disperse, but they tend to degrade the electrical properties of CNTs. Therefore, self-dispersed particles without the need for surfactant are highly desirable. We report here, for the first time to our knowledge, that CNT particles with negatively charged hydrophobic/water interfaces can easily self-disperse themselves in water via pretreating the nanotubes with a salt solution with a low concentration of sodium hypochlorite (NaClO) and sodium bromide (NaBr). The obtained aqueous CNT suspensions exhibit stable and superior colloidal performances. A series of pH titration experiments confirmed the presence and role of the electrical double layers on the surface of the salted carbon nanotubes and of functional groups and provided an in-depth understanding of the phenomenon.


IOP Conference Series: Materials Science and Engineering | 2017

High stability of few layer graphene nanoplatelets in various solvents

Xuezhu Xu; Jian Zhou; Gilles Lubineau

Dispersion of few-layer graphene nanoplatelets (GNPs) in liquid media is a crucial step for various applications. Here, we highlight a simple, nondestructive method for preparing stable aqueous colloidal solutions with GNP powder quickly dispersed in 5 wt.% sodium–hypochlorite- (NaClO) and sodium-bromide- (NaBr) salted solvent by bath sonication. This method makes it possible to easily prepare a highly concentrated colloidal solution (1 mgml−1) of GNPs that can easily be re-dispersed in water (treated GNPs). The aqueous suspension we prepared remained stable for longer than a few weeks. We made similar tests with various solvents and dispersibility appeared to decrease with decreasing polarity. High-concentration suspensions using our facile dispersion method could be of particular interest to the large community using graphene for a diversity of applications.


ACS Applied Materials & Interfaces | 2018

Making a bilateral compression/tension sensor by pre-stretching open-crack networks in carbon nanotube papers

Yangyang Xin; Jian Zhou; Ran Tao; Xuezhu Xu; Gilles Lubineau

Highly stretchable strain sensors are key elements of new applications in wearable electronics and soft robotics. Most of the available technologies only measure positive strain (stretching), and cannot measure negative strains (compression). We propose here a stretchable technology that enables the measurement of both negative and positive strains with high sensitivity. A carbon nanotube paper is pre-cracked to introduce a well-controlled network of open cracks as the sensing element; then, the pre-cracked paper is sandwiched by a thermoplastic elastomer. The resulting sensor is also pre-stretched and subjected to thermal annealing, which removes any residual stress so that the pre-stretched configuration remains stable. This process results in a stretchable structure with a network of open cracks that is sensitive to both negative and positive strains. We demonstrate that such sensors can measure negative strains up to -13% with high sensitivity and robust stretchability.


Advanced Functional Materials | 2015

Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalyst‐Free Synthesis and its Application in Energy Storage Devices

Xuezhu Xu; Jian Zhou; D. H. Nagaraju; Long Jiang; Val R. Marinov; Gilles Lubineau; Husam N. Alshareef; Myungkeun Oh

Collaboration


Dive into the ezhu Xu's collaboration.

Top Co-Authors

Avatar

Gilles Lubineau

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jian Zhou

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Long Jiang

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Yangyang Xin

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dalaver H. Anjum

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Isaac Aguilar Ventura

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Long Chen

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Er Qiang Li

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fei Han

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ran Tao

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge