Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuhui Lee is active.

Publication


Featured researches published by Xuhui Lee.


Bulletin of the American Meteorological Society | 2001

FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities

Dennis D. Baldocchi; Eva Falge; Lianhong Gu; R. J. Olson; David Y. Hollinger; Steven W. Running; Peter M. Anthoni; Ch. Bernhofer; Kenneth J. Davis; Robert H. Evans; Jose D. Fuentes; Allen H. Goldstein; Gabriel G. Katul; Beverly E. Law; Xuhui Lee; Yadvinder Malhi; Tilden P. Meyers; William Munger; Walter Oechel; Kim Pilegaard; Hans Peter Schmid; Riccardo Valentini; Shashi B. Verma; Timo Vesala; Kell B. Wilson; S. C. Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.


Agricultural and Forest Meteorology | 2002

Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges

William J. Massman; Xuhui Lee

This study derives from and extends the discussions of a US DOE sponsored workshop held on 30 and 31 May, 2000 in Boulder, CO concerning issues and uncertainties related to long-term eddy covariance measurements of carbon and energy exchanges. The workshop was organized in response to concerns raised at the 1999 annual AmeriFlux meeting about the lack of uniformity among sites when making spectral corrections to eddy covariance flux estimates and when correcting the eddy covariance CO2 fluxes for lack of energy balance closure. Ultimately, this lack of uniformity makes cross-site comparisons and global synthesis difficult and uncertain. The workshop had two primary goals: first, to highlight issues involved in the accuracy of long-term eddy covariance flux records; and second, to identify research areas and actions of high priority for addressing these issues. Topics covered at the workshop include different methods for making spectral corrections, the influence of 3D effects such as drainage and advection, underestimation of eddy covariance fluxes due to inability to measure low frequency contributions, coordinate systems, and nighttime flux measurements. In addition, this study also covers some new and potentially important issues, not raised at the workshop, involving density terms to trace gas eddy covariance fluxes (Webb et al., 1980). Wherever possible, this paper synthesizes these discussions and make recommendations concerning methodologies and research priorities.


Journal of Geophysical Research | 1997

Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components

Peter D. Blanken; T.A. Black; P. C. Yang; H. H. Neumann; Z. Nesic; Ralf M. Staebler; G. Den Hartog; Michael D. Novak; Xuhui Lee

The energy balance components were measured throughout most of 1994 in and above a southern boreal aspen (Populus tremuloides Michx.) forest (53.629°N 106.200°W) with a hazelnut (Corylus cornuta Marsh.) understory as part of the Boreal Ecosystem-Atmosphere Study. The turbulent fluxes were measured at both levels using the eddy-covariance technique. After rejection of suspect data due to instationarity or inhomogeneity, occasional erratic behavior in turbulent fluxes and lack of energy balance closure led to a recalculation of the fluxes of sensible and latent heat using their ratio and the available energy. The seasonal development in leaf area was reflected in a strong seasonal pattern of the energy balance. Leaf growth began during the third week of May with a maximum forest leaf area index of 5.6 m 2 m -2 reached by mid-July. During the full-leaf period, aspen and hazelnut accounted for approximately 40 and 60% of the forest leaf area, respectively. Sensible heat was the dominant consumer of forest net radiation during the preleaf period, while latent heat accounted for the majority of forest net radiation during the leafed period. Hazelnut transpiration accounted for 25% of the forest transpiration during the summer months. During the full-leaf period (June 1 to September 7) daytime dry-canopy mean aspen and hazelnut canopy conductances were 330 mmol m -2 s -1 (8.4 mm s -1 ) (70% of the total forest conductance) and 113 mmol m -2 s -1 (2.9 mm s -1 ) (24% of the total forest conductance), respectively. Maximum aspen and hazelnut canopy conductances were 1200 mmol m -2 s -1 (30 mm s -1 ) and 910 mmol m -2 s -1 (23 mm s -1 ), respectively, and maximum stomatal conductances were 490 mmol m -2 s -1 (12.5 mm s -1 ) and 280 mmol m -2 s -1 (7 mm s -1 ), aspen and hazelnut, respectively. Both species showed a decrease in canopy conductance as the saturation deficit increased and both showed an increase in canopy conductance as the photosynthetic active radiation increased. There was a linear relationship between forest leaf area index and forest canopy conductance. The timing, duration, and maximum leaf area of this deciduous boreal forest was found to be an important control on transpiration at both levels of the canopy. The full-leaf hazelnut daytime mean Priestley and Taylor [1972] α coefficient of 1.22 indicated transpiration was largely energy controlled and the quantity of energy received at the hazelnut surface was a function of aspen leaf area. The full-leaf aspen daytime mean α of 0.91 indicated some stomatal control on transpiration, with a directly proportional relationship between forest leaf area and forest canopy conductance, varying α during much of the season through a range very sensitive to regional scale transpiration and surface-convective boundary laver feedbacks.


Nature | 2011

Observed increase in local cooling effect of deforestation at higher latitudes

Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan G. Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert G. Drake; Allen H. Goldstein; Lianhong Gu; Gabriel G. Katul; Thomas E. Kolb; Beverly E. Law; Hank A. Margolis; Tilden P. Meyers; Russell K. Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf M. Staebler; Steven C. Wofsy; Lei Zhao

Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth’s surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.


Boundary-Layer Meteorology | 2002

Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer

Jielun Sun; Sean P. Burns; Donald H. Lenschow; Robert M. Banta; Rob K. Newsom; Richard L. Coulter; Stephen J. Frasier; Turker Ince; Carmen J. Nappo; Joan Cuxart; William Blumen; Xuhui Lee; Xinzhang Hu

Using the unprecedented observational capabilities deployed duringthe Cooperative Atmosphere-Surface Exchange Study-99 (CASES-99),we found three distinct turbulence events on the night of 18October 1999, each of which was associated with differentphenomena: a density current, solitary waves, and downwardpropagating waves from a low-level jet. In this study, we focus onthe first event, the density current and its associatedintermittent turbulence. As the cold density current propagatedthrough the CASES-99 site, eddy motions in the upper part of thedensity current led to periodic overturning of the stratifiedflow, local thermal instability and a downward diffusion ofturbulent mixing. Propagation of the density current induced asecondary circulation. The descending motion following the head ofthe density current resulted in strong stratification, a sharpreduction in the turbulence, and a sudden increase in the windspeed. As the wind surge propagated toward the surface, shearinstability generated upward diffusion of turbulent mixing. Wedemonstrate in detail that the height and sequence of the localthermal and shear instabilities associated with the dynamics ofthe density current are responsible for the apparent intermittentturbulence.


Journal of Atmospheric and Oceanic Technology | 2005

In Situ Measurement of the Water Vapor 18O/16O Isotope Ratio for Atmospheric and Ecological Applications

Xuhui Lee; Steve Sargent; Ronald B. Smith; Bert Tanner

Abstract In this paper a system for in situ measurement of H216O/H218O in air based on tunable diode laser (TDL) absorption spectroscopy is described. Laboratory tests showed that its 60-min precision (one standard deviation) was 0.21‰ at a water vapor volume mixing ratio of 2.67 mmol mol−1 (dewpoint temperature −10.8°C at sea level) and improved to 0.09 at 15.3 mmol mol−1 (dewpoint temperature 13.4°C). The TDL measurement of the vapor generated by a dewpoint generator differed from the equilibrium prediction by −0.11 ± 0.43‰ (mean ± one standard deviation). Its measurement of the ambient water vapor differed from the cold-trap/mass spectrometer method by −0.36 ± 1.43‰. The larger noise of the latter comparison was caused primarily by the difficulty in extracting vapor from air without altering its isotope content. In a 1-week test in Logan, Utah, in August 2003, the isotope ratio of water vapor in ambient air was positively correlated with the water vapor mixing ratio and also responded to wetting events...


Boundary-Layer Meteorology | 1993

Atmospheric turbulence within and above a douglas-fir stand. Part II: Eddy fluxes of sensible heat and water vapour

Xuhui Lee; T. Andrew Black

This is the second paper describing a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. Two eddy correlation units were operated in the daytime to measure the fluxes of sensible heat and water vapour and other turbulence statistics at various heights within and above the stand. Net radiation was measured above the overstory using a stationary net radiometer and beneath the overstory using a tram system. Supplementary measurements included soil heat flux, humidity above and beneath the overstory, profiles of wind speed and air temperature, and the spatial variation of sensible heat flux near the forest floor.The sum of sensible and latent heat fluxes above the stand accounted for, on average, 83% of the available energy flux. On some days, energy budget closure was far better than on others. The average value of the Bowen ratio was 2.1 above the stand and 1.4 beneath the overstory. The mid-morning value of the canopy resistance was 150–450 s/m during the experiment and mid-day value of the Omega factor was about 0.20. The daytime mean canopy resistance showed a strong dependence on the mean saturation deficit during the two-week experimental period.The sum of sensible and latent heat fluxes beneath the overstory accounted for 74% of the available energy flux beneath the overstory. One of the reasons for this energy imbalance was that the small number of soil heat flux plates and the short pathway of the radiometer tram system was unable to account for the large horizontal heterogeneity in the available energy flux beneath the overstory. On the other hand, good agreement was obtained among the measurements of sensible heat flux made near the forest floor at four positions 15 m apart.There was a constant flux layer in the trunk space, a large flux divergence in the canopy layer, and a constant flux layer above the stand. Counter-gradient flux of sensible heat constantly occurred at the base of the canopy.The transfer of sensible heat and water vapour was dominated by intermittent cool downdraft and warm updraft events and dry downdraft and moist updraft events, respectively, at all levels. For sensible heat flux, the ratio of the contribution of cool downdrafts to that of warm updrafts was greater than one in the canopy layer and less than one above the stand and near the forest floor.


Plant Cell and Environment | 2008

δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy

Lisa R. Welp; Xuhui Lee; Kyounghee Kim; Timothy J. Griffis; K. Billmark; John M. Baker

Stable isotopes in water have the potential to diagnose changes in the earths hydrological budget in response to climate change and land use change. However, there have been few measurements in the vapour phase. Here, we present high-frequency measurements of oxygen isotopic compositions of water vapour (delta(v)) and evapotranspiration (delta(ET)) above a soybean canopy using the tunable diode laser (TDL) technique for the entire 2006 growing season in Minnesota, USA. We observed a large variability in surface delta(v) from the daily to the seasonal timescales, largely explained by Rayleigh processes, but also influenced by vertical atmospheric mixing, local evapotranspiration (ET) and dew formation. We used delta(ET) measurements to calculate the isotopic composition at the sites of evaporative enrichment in leaves (delta(L,e)) and compared that with the commonly used steady-state prediction (delta(L,s)). There was generally a good agreement averaged over the season, but larger differences on individual days. We also found that vertical variability in relative humidity and temperature associated with canopy structure must be addressed in canopy-scale leaf water models. Finally, we explored this data set for direct evidence of the Péclet effect.


Tellus B | 2006

Water vapour 18O/16O isotope ratio in surface air in New England, USA

Xuhui Lee; Ronald B. Smith; John Williams

In this paper, we report the results of the analysis of two high-resolution time-series of water vapour 18O/16O ratio (δv) in surface air observed in Connecticut, USA. On an annual time-scale, δv is a linear function of lnw, where w is water vapour mixing ratio, and is approximated by a Rayleigh distillation model with partial (80%) rainout. On time scales a few days, δv shows considerable variations, often exceeding 20 per mil, and is higher in the wetting phase than in the drying phase of a weather cycle. In precipitation events, the vapour in the surface layer is in general brought to state of equilibrium with falling raindrops but not with snowflakes. On a diurnal time-scale, a peak-to-peak variation of 1–2 per mil is observed at a coastal site. At an interior site, evidence of a diurnal pattern is present only on days of low humidity. Our results suggest that the intercept parameter of the Keeling plot is an ambiguous quantity and should not be interpreted as being equivalent to the isotopic signature of evapotranspiration.


Forest Ecology and Management | 2000

Air motion within and above forest vegetation in non-ideal conditions

Xuhui Lee

Abstract Gaining a good knowledge of air motion in forest vegetation is a necessary step towards a better understanding of a number major abiotic impacts on the trees such as wind risk, pollutant and nutrient deposition, frost, material dispersion and transport, and energy, water and carbon exchanges. In a recent survey study, Raupach et al. [Raupach, M.R., Finnigan, J.J., Brunet, Y., 1996. Bound.-Layer Meteorol. 78, 351–382] reviewed the current state of knowledge about air flow under ideal conditions (neutral to slightly unstable conditions, homogeneous and extensive canopy, flat terrain). This paper extends the knowledge by employing advances in our understanding of the flow in ‘non-ideal’ situations. The paper is divided into four topic areas: canopy flow under stable stratification, disturbed flow (forest edge, forest clearing, sparse canopy), canopy flow over complex terrain, and extreme wind events. Discussion of the latter two topics is of limited scope because of the scanty literature. A detailed account is given to the nighttime canopy wave phenomenon, broad patterns of the transitional flow across forest edges, and models of various complexities of the disturbed flows. Both observational and modeling aspects are discussed wherever possible. This synthesis study has identified a number of important questions in need of further research.

Collaboration


Dive into the Xuhui Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Xiao

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shoudong Liu

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuefa Wen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaomin Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Andrew Black

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge