Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuming Deng is active.

Publication


Featured researches published by Xuming Deng.


PLOS ONE | 2010

Subinhibitory Concentrations of Thymol Reduce Enterotoxins A and B and α-Hemolysin Production in Staphylococcus aureus Isolates

Jiazhang Qiu; Dacheng Wang; Hua Xiang; Haihua Feng; Youshuai Jiang; Lijie Xia; Jing Dong; Jing Lu; Lu Yu; Xuming Deng

Background Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., α-hemolysin and enterotoxins) by S. aureus. Methodology/Principal Findings Secretion of α-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF) release assays were performed to elucidate the biological relevance of changes in α-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding α-hemolysin, SEA and SEB, respectively) was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of α-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. Conclusions/Significance Subinhibitory concentrations of thymol decreased the production of α-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with β-lactams and glycopeptide antibiotics, which induce expression of α-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors.


International Immunopharmacology | 2009

Protective effect of florfenicol on acute lung injury induced by lipopolysaccharide in mice

Xuemei Zhang; Keji Song; Huanzhang Xiong; Hongyu Li; Xiao Chu; Xuming Deng

Florfenicol, an antibiotic used to treat infection, has previously been shown to modulate early cytokine responses and increase mouse survival in endotoxemia. In the present study, we investigated in vivo the effect of florfenicol on acute lung injury (ALI) induced by lipopolysaccharide (LPS). In the mouse model of LPS-induced inflammatory lung injury, we found that pretreatment with a single 100mg/kg dose of florfenicol significantly decreases the W/D ratio of lungs and protein concentration in the bronchoalveolar lavage fluid (BALF) and significantly reduces the number of total cells, neutrophils and macrophages in the BALF at 24h after LPS challenge. In addition, histopathological examination indicates that florfenicol significantly attenuates tissue injury of the lungs in LPS-induced ALI. Furthermore, florfenicol also inhibits the production of several inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) at 6 and 12h, interleukin-6 (IL-6) at 12 and 24h, and interleukin-1ss (IL-1ss) at 12h, in the BALF after LPS challenge. These results suggest that florfenicol protects against LPS-induced ALI in mice.


International Immunopharmacology | 2012

Kaempferol regulates MAPKs and NF-κB signaling pathways to attenuate LPS-induced acute lung injury in mice

Xiaojun Chen; Xiaofeng Yang; Tianjiao Liu; Mingfeng Guan; Xiangru Feng; Wei Dong; Xiao Chu; Jing Liu; Xiuli Tian; Xinxin Ci; Hongyu Li; Jingyuan Wei; Yanhong Deng; Xuming Deng; Gefu Chi; Zhiliang Sun

Recent studies show that mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways are two pivotal roles contributing to the development of lipopolysaccharide (LPS)-induced acute lung injury (ALI). The present study aimed to investigate the protective effect of kaempferol (Kae), a naturally occurring flavonoid compound, on ALI and explore its possible mechanisms. Male BALB/c mice with ALI, induced by intranasal instillation of LPS, were treated or not with Kae (100 mg/kg, intragastrically) 1h prior to LPS exposure. Kae treatment attenuated pulmonary edema of mice with ALI after LPS challenge, as it markedly decreased the lung W/D ratio of lung samples, protein concentration and the amounts of inflammatory cells in BALF. Similarly, LPS mediated overproduction of proinflammatory cytokines in BALF, including TNF-α, IL-1β and IL-6, was strongly reduced by Kae. Histological studies demonstrated that Kae substantially inhibited LPS-induced alveolar wall thickness, alveolar hemorrhage and leukocytes infiltration in lung tissue with evidence of reduced myeloperoxidase (MPO) activity. Kae also efficiently increased superoxide dismutase (SOD) activity of lung sample when compared with LPS group, which was obviously reduced by LPS administration. In addition, Western blot analysis indicated that the activation of MAPKs and NF-κB signaling pathways stimulated by LPS was significantly blocked by Kae. Taken together, our results suggest that Kae exhibits a protective effect on LPS-induced ALI via suppression of MAPKs and NF-κB signaling pathways, which may involve the inhibition of tissue oxidative injury and pulmonary inflammatory process.


PLOS ONE | 2011

Subinhibitory Concentrations of Perilla Oil Affect the Expression of Secreted Virulence Factor Genes in Staphylococcus aureus

Jiazhang Qiu; Xiaoran Zhang; Mingjing Luo; Hongen Li; Jing Dong; Jianfeng Wang; Bingfeng Leng; Xiaoliang Wang; Haihua Feng; Wen-Zhi Ren; Xuming Deng

Background The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L.) Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil) has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. Methodology/Principal Findings A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF) release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins), and toxic shock syndrome toxin 1 (TSST-1) in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Conclusions/Significance The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.


The Journal of Infectious Diseases | 2012

Baicalin protects mice from Staphylococcus aureus pneumonia via inhibition of the cytolytic activity of α-hemolysin.

Jiazhang Qiu; Xiaodi Niu; Jing Dong; Dacheng Wang; Jianfeng Wang; Hongen Li; Mingjing Luo; Shentao Li; Haihua Feng; Xuming Deng

α-Hemolysin (Hla) is a self-assembling, channel-forming toxin that is secreted by Staphylococcus aureus and is central to the pathogenesis of pulmonary, intraperitoneal, intramammary, and corneal infections in animal models. In this study, we report that baicalin (BAI), a natural compound that lacks anti-S. aureus activity, could inhibit the hemolytic activity of Hla. Using molecular dynamics simulations and mutagenesis assays, we further demonstrate that BAI binds to the binding sites of Y148, P151, and F153 in the Hla. This binding interaction inhibits heptamer formation. Furthermore, when added to S. aureus cultures, BAI prevents Hla-mediated human alveolar epithelial (A549) cell injury. In vivo studies further demonstrated that BAI protects mice from S. aureus pneumonia. These findings indicate that BAI hinders the cell lysis activity of Hla through a novel mechanism of interrupting the formation of heptamer, which may lead to the development of novel therapeutics that aim against S. aureus Hla.


Journal of Medical Microbiology | 2009

Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans.

Na Guo; Jingbo Liu; Xiuping Wu; Xingming Bi; Rizeng Meng; Xuelin Wang; Hua Xiang; Xuming Deng; Lu Yu

Thymol (THY) was found to have in vitro antifungal activity against 24 fluconazole (FLC)-resistant and 12 FLC-susceptible clinical isolates of Candida albicans, standard strain ATCC 10231 and one experimentally induced FLC-resistant C. albicans S-1. In addition, synergism was observed for clinical isolates of C. albicans with combinations of THY-FLC and THY-amphotericin B (AMB) evaluated by the chequerboard microdilution method. The interaction intensity was determined by spectrophotometry for the chequerboard assay, and the nature of the interactions was assessed using two non-parametric approaches [fractional inhibitory concentration index (FICI) and DeltaE models]. The interaction between THY-FLC or THY-AMB in FLC-resistant and -susceptible strains of C. albicans showed a high percentage of synergism by the FICI method and the DeltaE method. The DeltaE model gave results consistent with FICI, and no antagonistic action was observed in the strains tested.


Molecules | 2012

Effects of a Natural Prolyl Oligopeptidase Inhibitor, Rosmarinic Acid, on Lipopolysaccharide-Induced Acute Lung Injury in Mice

Xiao Chu; Xinxin Ci; Jiakang He; Lanxiang Jiang; Miaomiao Wei; Qingjun Cao; Mingfeng Guan; Xianxing Xie; Xuming Deng

Rosmarinic acid (RA), a polyphenolic phytochemical, is a natural prolyl oligopeptidase inhibitor. In the present study, we found that RA exerted potent anti-inflammatory effects in in vivo models of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Mice were pretreated with RA one hour before challenge with a dose of 0.5 mg/kg LPS. Twenty-four hours after LPS was given, bronchoalveolar lavage fluid (BALF) was obtained to measure pro-inflammatory mediator and total cell counts. RA significantly decreased the production of LPS-induced TNF-α, IL-6, and IL-1β compare with the LPS group. When pretreated with RA (5, 10, or 20 mg/kg) the lung wet-to-dry weight (W/D) ratio of the lung tissue and the number of total cells, neutrophils and macrophages in the BALF were decreased significantly. Furthermore, RA may enhance oxidase dimutase (SOD) activity during the inflammatory response to LPS-induced ALI. And we further demonstrated that RA exerts anti-inflammation effect in vivo models of ALI through suppresses ERK/MAPK signaling in a dose dependent manner. These studies have important implications for RA administration as a potential treatment for ALI.


Journal of Agricultural and Food Chemistry | 2012

Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo.

Xiao Chu; Xinxin Ci; Miaomiao Wei; Xiaofeng Yang; Qingjun Cao; Mingfeng Guan; Hongyu Li; Yanhong Deng; Haihua Feng; Xuming Deng

Licochalcone A (Lico A), a flavonoid found in licorice root (Glycyrrhiza glabra), is known for its antimicrobial activity and its reported ability to inhibit cancer cell proliferation. In the present study, we found that Lico A exerted potent anti-inflammatory effects in in vitro and in vivo models induced by lipopolysaccharide (LPS). The concentrations of TNF-α, interleukin (IL)-6, and IL-1β in the culture supernatants of RAW 264.7 cells were determined at different time points following LPS administration. LPS (0.5 mg/kg) was instilled intranasally (i.n.) in phosphate-buffered saline to induce acute lung injury, and 24 h after LPS was given, bronchoalveolar lavage fluid was obtained to measure pro-inflammatory mediator and total cell counts. The phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) p65 protein was analyzed by Western blotting. Our results showed that Lico A significantly reduced the amount of inflammatory cells, the lung wet-to-dry weight (W/D) ratio, protein leakage, and myeloperoxidase activity and enhances oxidase dimutase activity in mice with LPS-induced acute lung injury (ALI). Enzyme-linked immunosorbent assay results indicated that Lico A can significantly down-regulate TNF-α, IL-6, and IL-1β levels in vitro and in vivo, and treatment with Lico A significantly attenuated alveolar wall thickening, alveolar hemorrhage, interstitial edema, and inflammatory cells infiltration in mice with ALI. In addition, we further demonstrated that Lico A exerts an anti-inflammation effect in an in vivo model of acute lung injury through suppression of NF-κB activation and p38/ERK MAPK signaling in a dose-dependent manner.


International Immunopharmacology | 2012

In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses

Lanan Wassy Soromou; Xiao Chu; Lanxiang Jiang; Miaomiao Wei; Meixia Huo; Na Chen; Shuang Guan; Xiaofeng Yang; Chengzhen Chen; Haihua Feng; Xuming Deng

Pinocembrin or 5, 7-dihydroxyflavanone is a flavanone, a type of flavonoid. In the present study, we first assessed the anti-inflammatory effects of pinocembrin in RAW macrophage cells; and based on these effects, we investigated the therapeutic effects of pinocembrin in murine model of endotoxin-induced acute lung injury. We found that in vitro pretreatment with pinocembrin remarkably regulated the production of TNF-α, IL-1β, IL-6 and IL-10 via inhibiting the phosphorylation of IκBα, ERK1/2, JNK and p38MAPK. In the mouse model of LPS-induced acute lung injury, pinocembrin (20 or 50 mg/kg, i.p.) attenuated the development of pulmonary edema, histological severities, as well as neutrophil, lymphocyte and macrophage infiltration, which were increased by LPS administration. Additionally, TNF-α, IL-1β and IL-6 concentrations decreased significantly while the concentration of IL-10 was significantly increased after pinocembrin pretreatment. Our results also showed that pinocembrin attenuated LPS-induced lung injury through suppression of IκBα, JNK and p38MAPK activation. These findings suggest that pinocembrin may represent a novel candidate for the modulation of inflammatory responses.


PLOS ONE | 2012

Different effects of farrerol on an OVA-induced allergic asthma and LPS-induced acute lung injury.

Xinxin Ci; Xiao Chu; Miaomiao Wei; Xiaofeng Yang; Qinren Cai; Xuming Deng

Background Farrerol, isolated from rhododendron, has been shown to have the anti-bacterial activity, but no details on the anti-inflammatory activity. We further evaluated the effects of this compound in two experimental models of lung diseases. Methodology/Principal Findings For the asthma model, female BALB/c mice were challenged with ovalbumin (OVA), and then treated daily with farrerol (20 and 40 mg/kg, ip) as a therapeutic treatment from day 22 to day 26 post immunization. To induce acute lung injury, female BALB/c mice were injected intranasally with LPS and treated with farrerol (20 and 40 mg/kg, i.p.) 1 h prior to LPS stimulation. Inflammation in the two different models was determined using ELISA, histology, real-time PCR and western blot. Farrerol significantly regulated the phenotype challenged by OVA, like cell number, Th1 and Th2 cytokines levels in the BALF, the OVA-specific IgE level in the serum, goblet cell hyperplasia in the airway, airway hyperresponsiveness to inhaled methacholine and mRNA expression of chemokines and their receptors. Furthermore, farrerol markedly attenuated the activation of phosphorylation of Akt and nuclear factor-κB (NF-κB) subunit p65 both in vivo and in vitro. However, farrerol has no effect on the acute lung injury model. Conclusion/Significance Our finding demonstrates that the distinct anti-inflammatory effect of farrerol in the treatment of asthma acts by inhibiting the PI3K and NF-κB pathway.

Collaboration


Dive into the Xuming Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge