ming Xu
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by ming Xu.
Nature | 2011
Hyo Jung Kang; Yuka Imamura Kawasawa; Feng Cheng; Ying Zhu; Xuming Xu; Mingfeng Li; André M.M. Sousa; Mihovil Pletikos; Kyle A. Meyer; Goran Sedmak; Tobias Guennel; Yurae Shin; Matthew B. Johnson; Željka Krsnik; Simone Mayer; Sofia Fertuzinhos; Sheila Umlauf; Steven Lisgo; Alexander O. Vortmeyer; Daniel R. Weinberger; Shrikant Mane; Thomas M. Hyde; Anita Huttner; Mark Reimers; Joel E. Kleinman; Nenad Sestan
Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Wenqi Han; Kenneth Y. Kwan; Sungbo Shim; Mandy M. S. Lam; Yurae Shin; Xuming Xu; Ying Zhu; Mingfeng Li; Nenad Sestan
The corticospinal (CS) tract is involved in controlling discrete voluntary skilled movements in mammals. The CS tract arises exclusively from layer (L) 5 projection neurons of the cerebral cortex, and its formation requires L5 activity of Fezf2 (Fezl, Zfp312). How this L5-specific pattern of Fezf2 expression and CS axonal connectivity is established with such remarkable fidelity had remained elusive. Here we show that the transcription factor TBR1 directly binds the Fezf2 locus and represses its activity in L6 corticothalamic projection neurons to restrict the origin of the CS tract to L5. In Tbr1 null mutants, CS axons ectopically originate from L6 neurons in a Fezf2-dependent manner. Consistently, misexpression of Tbr1 in L5 CS neurons suppresses Fezf2 expression and effectively abolishes the CS tract. Taken together, our findings show that TBR1 is a direct transcriptional repressor of Fezf2 and a negative regulator of CS tract formation that restricts the laminar origin of CS axons specifically to L5.
Nature Neuroscience | 2015
Schahram Akbarian; Chunyu Liu; James A. Knowles; Flora M. Vaccarino; Peggy J. Farnham; Gregory E. Crawford; Andrew E. Jaffe; Dalila Pinto; Stella Dracheva; Daniel H. Geschwind; Jonathan Mill; Angus C. Nairn; Alexej Abyzov; Sirisha Pochareddy; Shyam Prabhakar; Sherman M. Weissman; Patrick F. Sullivan; Matthew W. State; Zhiping Weng; Mette A. Peters; Kevin P. White; Mark Gerstein; Anahita Amiri; Chris Armoskus; Allison E. Ashley-Koch; Taejeong Bae; Andrea Beckel-Mitchener; Benjamin P. Berman; Gerhard A. Coetzee; Gianfilippo Coppola
Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE.
Investigative Ophthalmology & Visual Science | 2008
Kar Wah Leung; Mu-Gen Liu; Xuming Xu; Magdalene J. Seiler; Colin J. Barnstable; Joyce Tombran-Tink
PURPOSE Zinc is an essential cofactor for normal cell function. Altered expression and function of zinc transporters may contribute to the pathogenesis of neurodegenerative disorders including macular degeneration. The expression and regulation of zinc transporters in the RPE and the toxicity of zinc to these cells were examined. METHODS Zinc transporters were identified in a human RPE cell line, ARPE19, using a 28K human array, and their expression was confirmed by PCR, immunocytochemistry, and Western blot analysis in primary human RPE cultures and ARPE19. Zinc toxicity to ARPE19 was determined using monotetrazolium, propidium iodide, and TUNEL assays, and Zn(2+) uptake was visualized with Zinquin ethyl ester. The effect of various growth factors on zinc transporter expression also was examined. RESULTS Transcripts for 20 of 23 zinc transporters are expressed in fetal human RPE, 16 of 23 in adult human RPE, and 21 of 23 in ARPE19. Zn transporter proteins were also detected in ARPE19. ZnT5 expression was not observed, whereas ZnT6, ZIP1, and ZIP13 were the most abundantly expressed in all RPE samples. The addition of low concentrations of Zn(2+) to cultures resulted in a dose-dependent increase in intracellular Zn(2+) content in ARPE19, and >30 nM Zn(2+) induced necrosis with an LC(50) of 117.4 nM. Brain-derived neurotrophic factor, ciliary neurotrophic factor, glial-derived neurotrophic factor (GDNF), and pigment epithelial-derived neurotrophic factor (PEDF) increased ZIP2 expression, GDNF and PEDF increased ZnT2 expression, and PEDF increased ZnT3 and ZnT8 expression. These neurotrophic factors also promoted Zn(2+) uptake in the RPE. CONCLUSIONS The array of zinc transporters expressed by the RPE may play a key role in zinc homeostasis in the retina and in ocular health and diseases.
Cerebral Cortex | 2013
Hao Huang; Tina Jeon; Goran Sedmak; Mihovil Pletikos; Lana Vasung; Xuming Xu; Paul Yarowsky; Linda J. Richards; Ivica Kostović; Nenad Sestan; Susumu Mori
As a prominent component of the human fetal brain, the structure of the cerebral wall is characterized by its laminar organization which includes the radial glial scaffold during fetal development. Diffusion tensor imaging (DTI) is useful to quantitatively delineate the microstructure of the developing brain and to clearly identify transient fetal layers in the cerebral wall. In our study, the spatio-temporal microstructural changes in the developing human fetal cerebral wall were quantitatively characterized with high-resolution DTI data of postmortem fetal brains from 13 to 21 gestational weeks. Eleven regions of interest for each layer in the entire cerebral wall were included. Distinctive time courses of microstructural changes were revealed for 11 regions of the neocortical plate. A histological analysis was also integrated to elucidate the relationship between DTI fractional anisotropy (FA) and histology. High FA values correlated with organized radial architecture in histological image. Expression levels of 17565 genes were quantified for each of 11 regions of human fetal neocortex from 13 to 21 gestational weeks to identify transcripts showing significant correlation with FA change. These correlations suggest that the heterogeneous and regionally specific microstructural changes of the human neocortex are related to different gene expression patterns.
BMC Developmental Biology | 2006
Samuel Shao Min Zhang; Xuming Xu; Mu Gen Liu; Hongyu Zhao; Marcelo B. Soares; Colin J. Barnstable; Xin-Yuan Fu
BackgroundBetween embryonic day 12 and postnatal day 21, six major neuronal and one glia cell type are generated from multipotential progenitors in a characteristic sequence during mouse retina development. We investigated expression patterns of retina transcripts during the major embryonic and postnatal developmental stages to provide a systematic view of normal mouse retina development,ResultsA tissue-specific cDNA microarray was generated using a set of sequence non-redundant EST clones collected from mouse retina. Eleven stages of mouse retina, from embryonic day 12.5 (El2.5) to postnatal day 21 (PN21), were collected for RNA isolation. Non-amplified RNAs were labeled for microarray experiments and three sets of data were analyzed for significance, hierarchical relationships, and functional clustering. Six individual gene expression clusters were identified based on expression patterns of transcripts through retina development. Two developmental phases were clearly divided with postnatal day 5 (PN5) as a separate cluster. Among 4,180 transcripts that changed significantly during development, approximately 2/3 of the genes were expressed at high levels up until PN5 and then declined whereas the other 1/3 of the genes increased expression from PN5 and remained at the higher levels until at least PN21. Less than 1% of the genes observed showed a peak of expression between the two phases. Among the later increased population, only about 40% genes are correlated with rod photoreceptors, indicating that multiple cell types contributed to gene expression in this phase. Within the same functional classes, however, different gene populations were expressed in distinct developmental phases. A correlation coefficient analysis of gene expression during retina development between previous SAGE studies and this study was also carried out.ConclusionThis study provides a complementary genome-wide view of common gene dynamics and a broad molecular classification of mouse retina development. Different genes in the same functional clusters are expressed in the different developmental stages, suggesting that cells might change gene expression profiles from differentiation to maturation stages. We propose that large-scale changes in gene regulation during development are necessary for the final maturation and function of the retina.
PLOS ONE | 2012
Evgenya Y. Popova; Xuming Xu; Andrew T. DeWan; Anna C. Salzberg; Arthur Berg; Josephine Hoh; Samuel Shao-Min Zhang; Colin J. Barnstable
The epigenetic contribution to neurogenesis is largely unknown. There is, however, growing evidence that posttranslational modification of histones is a dynamic process that shows many correlations with gene expression. Here we have followed the genome-wide distribution of two important histone H3 modifications, H3K4me2 and H3K27me3 during late mouse retina development. The retina provides an ideal model for these studies because of its well-characterized structure and development and also the extensive studies of the retinal transcriptome and its development. We found that a group of genes expressed only in mature rod photoreceptors have a unique signature consisting of de-novo accumulation of H3K4me2, both at the transcription start site (TSS) and over the whole gene, that correlates with the increase in transcription, but no accumulation of H3K27me3 at any stage. By in silico analysis of this unique signature we have identified a larger group of genes that may be selectively expressed in mature rod photoreceptors. We also found that the distribution of H3K4me2 and H3K27me3 on the genes widely expressed is not always associated with their transcriptional levels. Different histone signatures for retinal genes with the same gene expression pattern suggest the diversities of epigenetic regulation. Genes without H3K4me2 and H3K27me3 accumulation at any stage represent a large group of transcripts never expressed in retina. The epigenetic signatures defined by H3K4me2 and H3K27me3 can distinguish cell-type specific genes from widespread transcripts and may be reflective of cell specificity during retina maturation. In addition to the developmental patterns seen in wild type retina, the dramatic changes of histone modification in the retinas of mutant animals lacking rod photoreceptors provide a tool to study the epigenetic changes in other cell types and thus describe a broad range of epigenetic events in a solid tissue in vivo.
BMC Genomics | 2005
Samuel Shao-Min Zhang; Xuming Xu; Jinming Li; Mu-Gen Liu; Hongyu Zhao; M Bento Soares; Colin J. Barnstable; Xin-Yuan Fu
BackgroundThe retina is a well-defined portion of the central nervous system (CNS) that has been used as a model for CNS development and function studies. The full specification of transcripts in an individual tissue or cell type, like retina, can greatly aid the understanding of the control of cell differentiation and cell function. In this study, we have integrated computational bioinformatics and microarray experimental approaches to classify the tissue specificity and developmental distribution of mouse retina transcripts.ResultsWe have classified a set of retina-specific genes using sequence-based screening integrated with computational and retina tissue-specific microarray approaches. 33,737 non-redundant sequences were identified as retina transcript clusters (RTCs) from more than 81,000 mouse retina ESTs. We estimate that about 19,000 to 20,000 genes might express in mouse retina from embryonic to adult stages. 39.1% of the RTCs are not covered by 60,770 RIKEN full-length cDNAs. Through comparison with 2 million mouse ESTs, spectra of neural, retinal, late-generated retinal, and photoreceptor -enriched RTCs have been generated. More than 70% of these RTCs have data from biological experiments confirming their tissue-specific expression pattern. The highest-grade retina-enriched pool covered almost all the known genes encoding proteins involved in photo-transduction.ConclusionThis study provides a comprehensive mouse retina transcript profile for further gene discovery in retina and suggests that tissue-specific transcripts contribute substantially to the whole transcriptome.
BMC Genomics | 2006
Xuming Xu; Samuel Shao-Min Zhang; Colin J. Barnstable; Joyce Tombran-Tink
BackgroundPigment epithelium derived factor (PEDF), a member of the serpin family, regulates cell proliferation, promotes survival of neurons, and blocks growth of new blood vessels in mammals. Defining the molecular phylogeny of PEDF by bioinformatic analysis is one approach to understanding the link between its gene structure and its function in these biological processes.ResultsFrom a comprehensive search of available DNA databases we identified a single PEDF gene in all vertebrate species examined. These included four mammalian and six non-mammalian vertebrate species in which PEDF had not previously been described. A five gene cluster around PEDF was found in an approximate 100 kb region in mammals, birds, and amphibians. In ray-finned fish these genes are scattered over three chromosomes although only one PEDF gene was consistently found. The PEDF gene is absent in invertebrates including Drosophila melanogaster (D. melanogaster), Caenorhabditis elegans (C. elegans), and sea squirt (C. intestinalis). The PEDF gene is transcribed in all vertebrate phyla, suggesting it is biologically active throughout vertebrate evolution. The multiple actions of PEDF are likely conserved in evolution since it has the same gene structure across phyla, although the size of the gene ranges from 48.3 kb in X. tropicalis to 2.9 kb in fugu, with human PEDF at a size of 15.6 kb. A strong similarity in the proximal 200 bp of the PEDF promoter in mammals suggests the existence of a possible regulatory region across phyla. Using a non-synonymous/synonymous substitution rate ratio we show that mammalian and fish PEDFs have similar ratios of <0.13, reflecting a strong purifying selection of PEDF gene. A large number of repetitive transposable elements of the SINE and LINE class were found with random distribution in both the promoter and introns of mammalian PEDF.ConclusionThe PEDF gene first appears in vertebrates and our studies suggest that the regulation and biological actions of this gene are preserved across vertebrates. This comprehensive analysis of the PEDF gene across phyla provides new information that will aid further characterization of common functional motifs of this serpin in biological processes.
Journal of Ocular Biology, Diseases, and Informatics | 2008
Mu-Gen Liu; Hong Li; Xuming Xu; Colin J. Barnstable; Samuel Shao-Min Zhang
Retina explants are widely used as a model of neural development. To define the molecular basis of differences between the development of retina in vivo and in vitro during the early postnatal period, we carried out a series of microarray comparisons using mouse retinas. About 75% of 8,880 expressed genes from retina explants kept the same expression volume and pattern as the retina in vivo. Fewer than 6% of the total gene population was changed at two consecutive time points, and only about 1% genes showed more than a threefold change at any time point studied. Functional Gene Ontology (GO) mapping for both changed and unchanged genes showed similar distribution patterns, except that more genes were changed in the GO clusters of response to stimuli and carbohydrate metabolism. Three distinct expression patterns of genes preferentially expressed in rod photoreceptors were observed in the retina explants. Some genes showed a lag in increased expression, some showed no change, and some continued to have a reduced level of expression. An early downregulation of cyclin D1 in the explanted retina might explain the reduction in numbers of precursors in explanted retina and suggests that external factors are required for maintenance of cyclin D1. The global view of gene profiles presented in this study will help define the molecular changes in retina explants over time and will provide criteria to define future changes that improve this model system.