Xungang Yin
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xungang Yin.
Bulletin of the American Meteorological Society | 2012
Anthony Arguez; Imke Durre; Scott Applequist; Russell S. Vose; Michael F. Squires; Xungang Yin; Richard R. Heim; Timothy W. Owen
The National Oceanic and Atmospheric Administration (NOAA) released the 1981–2010 U.S. Climate Normals in July 2011, representing the latest decadal installment of this long-standing product line. Climatic averages (and other statistics) of temperature, precipitation, snowfall, and numerous derived quantities were calculated for ~9,800 stations operated by the U.S. National Weather Service (NWS). They include estimated normals, or “quasi normals,” for approximately 2,000 active short-record stations such as those in the U.S. Climate Reference Network. The 1981–2010 installment features several new products and methodological enhancements: 1) state-of-the-art temperature homogenization at the monthly scale, 2) extensive utilization of quality-controlled daily climate data, 3) new statistical approaches for calculating daily temperature normals and heating and cooling degree days, and 4) a comprehensive suite of precipitation, snowfall, and snow depth statistics. This paper provides a general overview of th...
Current Climate Change Reports | 2016
Kenneth E. Kunkel; David A. Robinson; Sarah M. Champion; Xungang Yin; Thomas Estilow; Rebekah M. Frankson
Recent studies of snow climatology show a mix of trends but a preponderance of evidence suggest an overall tendency toward decreases in several metrics of snow extremes. The analysis performed herein on maximum seasonal snow depth points to a robust negative trend in this variable for the period of winter 1960/1961–winter 2014/2015. This conclusion is applicable to North America. Maximum snow depth is also mostly decreasing for those European stations analyzed. Research studies show generally negative trends in snow cover extent and snow water equivalent across both North America and Eurasia. These results are mostly, but not fully, consistent with simple hypotheses for the effects of global warming on snow characteristics.
Journal of Applied Meteorology and Climatology | 2013
Imke Durre; Michael F. Squires; Russell S. Vose; Xungang Yin; Anthony Arguez; Scott Applequist
AbstractThe 1981–2010 “U.S. Climate Normals” released by the National Oceanic and Atmospheric Administration’s (NOAA) National Climatic Data Center include a suite of monthly, seasonal, and annual statistics that are based on precipitation, snowfall, and snow-depth measurements. This paper describes the procedures used to calculate the average totals, frequencies of occurrence, and percentiles that constitute these normals. All parameters were calculated from a single, state-of-the-art dataset of daily observations, taking care to produce normals that were as representative as possible of the full 1981–2010 period, even when the underlying data records were incomplete. In the resulting product, average precipitation totals are available at approximately 9300 stations across the United States and parts of the Caribbean Sea and Pacific Ocean islands. Snowfall and snow-depth statistics are provided for approximately 5300 of those stations, as compared with several hundred stations in the 1971–2000 normals. T...
Archive | 2009
Gilbert P. Compo; Jeffrey S. Whitaker; Prashant D. Sardeshmukh; N. Matsui; Rob Allan; Xungang Yin; Byron E. Gleason; Russell S. Vose; G. Rutledge; P. Bessemoulin; Stefan Brönnimann; Manola Brunet; R. Crouthamel; Andrea N. Grant; Pavel Ya. Groisman; P. D. Jones; Michael C. Kruk; Andries C. Kruger; Gareth J. Marshall; Maurizio Maugeri; H. Mok; Øyvind Nordli; Tom Ross; Ricardo M. Trigo; Xiaolan L. Wang; Scott D. Woodruff; Steven J. Worley
The Twentieth Century Reanalysis Project, supported by the Earth System Research Laboratory Physical Sciences Division from NOAA and the University of Colorado CIRES Climate Diagnostics Center, is an effort to produce a global reanalysis dataset spanning a portion of the nineteenth century and the entire twentieth century (1871 - near present), assimilating only surface observations of synoptic pressure, monthly sea surface temperature and sea ice distribution. Products include 6-hourly ensemble mean and spread analysis fields on a 2 by 2 degree global latitude-longitude grid, and 3 and 6-hourly ensemble mean and spread forecast (first guess) fields on a global Gaussian T62 grid. Fields are accessible in yearly time series (1 file per parameter) and monthly synoptic time (all parameters per synoptic hour) files. Ensemble grids, spectral coefficients, and other information will available by offline request in the future.\n\n The Twentieth Century Reanalysis Project used resources of the National Energy Research Scientific Computing Center managed by Lawrence Berkeley National Laboratory and of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which are supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Contract No. DE-AC05-00OR22725, respectively.\n\nNote: Version 2c of this reanalysis (running from 1851 - 2011) is the recommended research version. Please see ds131.2 to access Version 2c.
Bulletin of the American Meteorological Society | 2012
Scott Applequist; Anthony Arguez; Imke Durre; Michael F. Squires; Russell S. Vose; Xungang Yin
The 1981–2010 U.S. Climate Normals released by the National Oceanic and Atmospheric Administrations (NOAA) National Climatic Data Center (NCDC) include a suite of descriptive statistics based on hourly observations. For each hour and day of the year, statistics of temperature, dew point, mean sea level pressure, wind, clouds, heat index, wind chill, and heating and cooling degree hours are provided as 30-year averages, frequencies of occurrence, and percentiles. These hourly normals are available for 262 locations, primarily major airports, from across the United States and its Pacific territories. We encourage use of these products specifically for examination of the diurnal cycle of a particular variable, and how that change may shift over the annual cycle.
Archive | 2010
Gilbert P. Compo; Jeffrey S. Whitaker; Prashant D. Sardeshmukh; N. Matsui; Rob Allan; Xungang Yin; Byron E. Gleason; Russell S. Vose; G. Rutledge; P. Bessemoulin; Stefan Brönnimann; Manola Brunet; R. Crouthamel; Andrea N. Grant; Pavel Ya. Groisman; P. D. Jones; Michael C. Kruk; Andries C. Kruger; Gareth J. Marshall; Maurizio Maugeri; H. Mok; Øyvind Nordli; Tom Ross; Ricardo M. Trigo; Xiaolan L. Wang; Scott D. Woodruff; Steven J. Worley
The International Surface Pressure Databank (ISPD; Cram et al. 2015) [http://reanalyses.org/observations/international-surface-pressure-databank] is the worlds largest collection of pressure observations. It has been gathered through international cooperation with data recovery facilitated by the ACRE Initiative and the other contributing organizations and assembled under the auspices of the GCOS Working Group on Surface Pressure and the WCRP/GCOS Working Group on Observational Data Sets for Reanalysis by NOAA Earth System Research Laboratory (ESRL), NOAAs National Climatic Data Center (NCDC), and the Climate Diagnostics Center (CDC) of the University of Colorados Cooperative Institute for Research in Environmental Sciences (CIRES). The ISPDv2 consists of three components: station, marine, and tropical cyclone best track pressure observations. The station component is a blend of many national and international collections.\n\nNOTE: A newer version of this dataset, the International Surface Pressure Databank version 3, is available in RDA dataset ds132.1 [http://rda.ucar.edu/datasets/ds132.1/]. Users are recommended to access this updated dataset.\n\nThe Twentieth Century Reanalysis Project used resources of the National Energy Research Scientific Computing Center [http://www.nersc.gov/] and of the Oak Ridge Leadership Computing Facility [http://www.olcf.ornl.gov/] at Oak Ridge National Laboratory, which are supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Contract No. DE-AC05-00OR22725, respectively.
Journal of Atmospheric and Oceanic Technology | 2018
Imke Durre; Xungang Yin; Russell S. Vose; Scott Applequist; Jeff Arnfield
AbstractThe Integrated Global Radiosonde Archive (IGRA) is a collection of historical and near-real-time radiosonde and pilot balloon observations from around the globe. Consisting of a foundationa...
Geophysical Research Letters | 2013
Kenneth E. Kunkel; Thomas R. Karl; David R. Easterling; Kelly T. Redmond; John A. T. Young; Xungang Yin; Paula Hennon
Journal of Geophysical Research | 2009
Imke Durre; Claude N. Williams; Xungang Yin; Russell S. Vose
Climate Dynamics | 2011
Xiaolan L. Wang; Hui Wan; Francis W. Zwiers; Val R. Swail; Gilbert P. Compo; Rob Allan; Russell S. Vose; Sylvie Jourdain; Xungang Yin