Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xunqing Jiang is active.

Publication


Featured researches published by Xunqing Jiang.


Nature Structural & Molecular Biology | 2010

Conserved structural elements in the V3 crown of HIV-1 gp120.

Xunqing Jiang; Valicia Burke; Maxim Totrov; Constance Williams; Timothy Cardozo; Miroslaw K. Gorny; Susan Zolla-Pazner; Xiang-Peng Kong

Binding of the third variable region (V3) of the HIV-1 envelope glycoprotein gp120 to the cell-surface coreceptors CCR5 or CXCR4 during viral entry suggests that there are conserved structural elements in this sequence-variable region. These conserved elements could serve as epitopes to be targeted by a vaccine against HIV-1. Here we perform a systematic structural analysis of representative human anti-V3 monoclonal antibodies in complex with V3 peptides, revealing that the crown of V3 has four conserved structural elements: an arch, a band, a hydrophobic core and the peptide backbone. These are either unaffected by or are subject to minimal sequence variation. As these regions are targeted by cross-clade neutralizing human antibodies, they provide a blueprint for the design of vaccine immunogens that could elicit broadly cross-reactive protective antibodies.


Journal of Virology | 2011

Cross-Clade HIV-1 Neutralizing Antibodies Induced with V3-Scaffold Protein Immunogens following Priming with gp120 DNA

Susan Zolla-Pazner; Xiang-Peng Kong; Xunqing Jiang; Timothy Cardozo; Arthur Nádas; Sandra Cohen; Maxim Totrov; Michael S. Seaman; Shixia Wang; Shan Lu

ABSTRACT The V3 epitope is a known target for HIV-1 neutralizing antibodies (NAbs), and V3-scaffold fusion proteins used as boosting immunogens after gp120 DNA priming were previously shown to induce NAbs in rabbits. Here, we evaluated whether the breadth and potency of the NAb response could be improved when boosted with rationally designed V3-scaffold immunogens. Rabbits were primed with codon-optimized clade C gp120 DNA and boosted with one of five V3-cholera toxin B fusion proteins (V3-CTBs) or with double combinations of these. The inserts in these immunogens were designed to display V3 epitopes shared by the majority of global HIV-1 isolates. Double combinations of V3-CTB immunogens generally induced more broad and potent NAbs than did boosts with single V3-CTB immunogens, with the most potent and broad NAbs elicited with the V3-CTB carrying the consensus V3 of clade C (V3C-CTB), or with double combinations of V3-CTB immunogens that included V3C-CTB. Neutralization of tier 1 and 2 pseudoviruses from clades AG, B, and C and of peripheral blood mononuclear cell (PBMC)-grown primary viruses from clades A, AG, and B was achieved, demonstrating that priming with gp120 DNA followed by boosts with V3-scaffold immunogens effectively elicits cross-clade NAbs. Focusing on the V3 region is a first step in designing a vaccine targeting protective epitopes, a strategy with potential advantages over the use of Env, a molecule that evolved to protect the virus by poorly inducing NAbs and by shielding the epitopes that are most critical for infectivity.


Virology | 2010

Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold

Maxim Totrov; Xunqing Jiang; Xiang-Peng Kong; Sandra Cohen; Chavdar Krachmarov; Aidy Salomon; Constance Williams; Michael S. Seaman; Timothy Cardozo; Miroslaw K. Gorny; Shixia Wang; Shan Lu; Abraham Pinter; Susan Zolla-Pazner

V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boosting with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.


PLOS ONE | 2011

Human Anti-V3 HIV-1 Monoclonal Antibodies Encoded by the VH5-51/VL Lambda Genes Define a Conserved Antigenic Structure

Miroslaw K. Gorny; Jared M. Sampson; Huiguang Li; Xunqing Jiang; Maxim Totrov; Xiao-Hong Wang; Constance Williams; Timothy O'Neal; Barbara Volsky; Liuzhe Li; Timothy Cardozo; Phillipe N. Nyambi; Susan Zolla-Pazner; Xiang-Peng Kong

Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs.


Journal of Virology | 2016

Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits

Xunqing Jiang; Max Totrov; Wei Li; Jared M. Sampson; Constance Williams; Hong Lu; Xueling Wu; Shan Lu; Shixia Wang; Susan Zolla-Pazner; Xiang-Peng Kong

ABSTRACT The V1V2 region of HIV-1 gp120 harbors a major vulnerable site targeted by a group of broadly neutralizing monoclonal antibodies (MAbs) such as PG9 through strand-strand recognition. However, this epitope region is structurally polymorphic as it can also form a helical conformation recognized by RV144 vaccine-induced MAb CH58. This structural polymorphism is a potential mechanism for masking the V1V2 vulnerable site. Designing immunogens that can induce conformation-specific antibody (Ab) responses may lead to vaccines targeting this vulnerable site. We designed a panel of immunogens engrafting the V1V2 domain into trimeric and pentameric scaffolds in structurally constrained conformations. We also fused V1V2 to an Fc fragment to mimic the unconstrained V1V2 conformation. We tested these V1V2-scaffold proteins for immunogenicity in rabbits and assessed the responses by enzyme-linked immunosorbent assay (ELISA) and competition assays. Our V1V2 immunogens induced distinct conformation-specific Ab responses. Abs induced by structurally unconstrained immunogens reacted preferentially with unconstrained V1V2 antigens, suggesting recognition of the helical configuration, while Abs induced by the structurally constrained immunogens reacted preferentially with constrained V1V2 antigens, suggesting recognition of the β-strand conformation. The Ab responses induced by the structurally constrained immunogens were more broadly reactive and had higher titers than those induced by the structurally unconstrained immunogens. Our results demonstrate that immunogens presenting the different structural conformations of the gp120 V1V2 vulnerable site can be designed and that these immunogens induce distinct Ab responses with epitope conformation specificity. Therefore, these structurally constrained V1V2 immunogens are vaccine prototypes targeting the V1V2 domain of the HIV-1 envelope. IMPORTANCE The correlates analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the V1V2 region of HIV-1 gp120 was responsible for the modest protection observed in the trial. In addition, V1V2 harbors one of the key vulnerable sites of HIV-1 Env recognized by a family of broadly neutralizing MAbs such as PG9. Thus, V1V2 is a key target for vaccine development. However, this vulnerable site is structurally polymorphic, and designing immunogens that present different conformations is crucial for targeting this site. We show here that such immunogens can be designed and that they induced conformation-specific antibody responses in rabbits. Our immunogens are therefore prototypes of vaccine candidates targeting the V1V2 region of HIV-1 Env.


Journal of Virology | 2016

RATIONALLY-DESIGNED VACCINES TARGETING THE V2 REGION OF HIV-1 gp120 INDUCE A FOCUSED, CROSS CLADE-REACTIVE, BIOLOGICALLY FUNCTIONAL ANTIBODY RESPONSE

Susan Zolla-Pazner; Rebecca Powell; Sara Yahyaei; Constance Williams; Xunqing Jiang; Wei Li; Shan Lu; Shixia Wang; Chitra Upadhyay; Catarina E. Hioe; Max Totrov; Xiang-Peng Kong

ABSTRACT Strong antibody (Ab) responses against V1V2 epitopes of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope (Env) correlated with reduced infection rates in studies of HIV, simian-human immunodeficiency virus (SHIV), and simian immunodeficiency virus (SIV). In order to focus the Ab response on V1V2, we used six V1V2 sequences and nine scaffold proteins to construct immunogens which were tested using various immunization regimens for their ability to induce cross-reactive and biologically active V2 Abs in rabbits. A prime/boost immunization strategy was employed using gp120 DNA and various V1V2-scaffold proteins. The rabbit polyclonal Ab responses (i) were successfully focused on the V1V2 region, with weak or only transient responses to other Env epitopes, (ii) displayed broad cross-reactive binding activity with gp120s and the V1V2 regions of diverse strains from clades B, C, and E, (iii) included V2 Abs with specificities similar to those found in HIV-infected individuals, and (iv) remained detectable ≥1 year after the last boosting dose. Importantly, sera from rabbits receiving V1V2-scaffold immunogens displayed Ab-dependent cellular phagocytosis whereas sera from rabbits receiving only gp120 did not. The results represent the first fully successful example of reverse vaccinology in the HIV vaccine field with rationally designed epitope scaffold immunogens inducing Abs that recapitulate the epitope specificity and biologic activity of the human monoclonal Abs from which the immunogens were designed. Moreover, this is the first immunogenicity study using epitope-targeting, rationally designed vaccine constructs that induced an Fc-mediated activity associated with protection from infection with HIV, SIV, and SHIV. IMPORTANCE Novel immunogens were designed to focus the antibody response of rabbits on the V1V2 epitopes of HIV-1 gp120 since such antibodies were associated with reduced infection rates of HIV, SIV, and SHIV. The vaccine-induced antibodies were broadly cross-reactive with the V1V2 regions of HIV subtypes B, C and E and, importantly, facilitated Fc-mediated phagocytosis, an activity not induced upon immunization of rabbits with gp120. This is the first immunogenicity study of vaccine constructs that focuses the antibody response on V1V2 and induces V2-specific antibodies with the ability to mediate phagocytosis, an activity that has been associated with protection from infection with HIV, SIV, and SHIV.


PLOS ONE | 2017

Contrasting antibody responses to intrasubtype superinfection with CRF02_AG

Colleen Courtney; Luzia Mayr; Aubin Nanfack; Andrew N. Banin; Michael Tuen; Ruimin Pan; Xunqing Jiang; Xiang-Peng Kong; Allison R. Kirkpatrick; Daniel P. Bruno; Craig Martens; Lydia Sykora; Stephen F. Porcella; Andrew D. Redd; Thomas C. Quinn; Phillipe N. Nyambi; Ralf Dürr

HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide.


Vaccine | 2014

Vaccine Focusing to Cross-Subtype HIV-1 gp120 Variable Loop Epitopes

Timothy Cardozo; Shixia Wang; Xunqing Jiang; Xiang-Peng Kong; Catarina E. Hioe; Chavdar Krachmarov

We designed synthetic, epitope-focused immunogens that preferentially display individual neutralization epitopes targeted by cross-subtype anti-HIV V3 loop neutralizing monoclonal antibodies (mAbs). Vaccination of rabbits with these immunogens resulted in the elicitation of distinct polyclonal serum Abs that exhibit cross-subtype neutralization specificities mimicking the mAbs that guided the design. Our results prove the principle that a predictable range of epitope-specific polyclonal cross-subtype HIV-1 neutralizing Abs can be intentionally elicited in mammals by vaccination. The precise boundaries of the epitopes and conformational flexibility in the presentation of the epitopes in the immunogen appeared to be important for successful elicitation. This work may serve as a starting point for translating the activities of human broadly neutralizing anti-HIV-1 monoclonal antibodies (bNAbs) into matched immunogens that can contribute to an efficacious HIV-1 vaccine.


Journal of Visualized Experiments | 2012

Skin Tattooing As A Novel Approach For DNA Vaccine Delivery

Yung-Nung Chiu; Jared M. Sampson; Xunqing Jiang; Susan Zolla-Pazner; Xiang-Peng Kong

Nucleic acid-based vaccination is a topic of growing interest, especially plasmid DNA (pDNA) encoding immunologically important antigens. After the engineered pDNA is administered to the vaccines, it is transcribed and translated into immunogen proteins that can elicit responses from the immune system. Many ways of delivering DNA vaccines have been investigated; however each delivery route has its own advantages and pitfalls. Skin tattooing is a novel technique that is safe, cost-effective, and convenient. In addition, the punctures inflicted by the needle could also serve as a potent adjuvant. Here, we a) demonstrate the intradermal delivery of plasmid DNA encoding enhanced green fluorescent protein (pCX-EGFP) in a mouse model using a tattooing device and b) confirm the effective expression of EGFP in the skin cells using confocal microscopy.


PLOS Pathogens | 2018

Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to alpha 4 beta 7.

Sakaorat Lertjuthaporn; Claudia Cicala; Donald Van Ryk; Matthew Liu; Jason Yolitz; Danlan Wei; Fatima Nawaz; Allison Doyle; Brooke Horowitch; Chung Park; Shan Lu; Yang Lou; Shixia Wang; Ruimin Pan; Xunqing Jiang; Francois Villinger; Siddappa N. Byrareddy; Philip J. Santangelo; Lynn Morris; Constantinos Kurt Wibmer; Kristin K. Biris; Rosemarie D. Mason; Jason Gorman; Joseph Hiatt; Elena Martinelli; Mario Roederer; Dai Fujikawa; Giacomo Gorini; Genoveffa Franchini; Anush Arakelyan

The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4β7, a gut-homing receptor. Using both cell-surface expressed α4β7 and a soluble α4β7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4β7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4β7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4β7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4β7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4β7. It includes the canonical LDV/I α4β7 binding site, a cryptic epitope that lies 7–9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4β7 interactions. These mAbs recognize conformations absent from the β- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4β7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.

Collaboration


Dive into the Xunqing Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Zolla-Pazner

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Shixia Wang

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shan Lu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chavdar Krachmarov

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge